Skip to main content
Log in

High-performance polarization-sensitive photodetector based on a few-layered PdSe2 nanosheet

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The extraordinary optical and electronic properties of anisotropic two-dimensional materials, such as black phosphorus, ReS2, and GeSe, enable them a promising component of polarization-sensitive photodetectors. However, these applications are significantly limited by the challenges of air-stability, response time, and linearly dichroic ratio. Interestingly, palladium diselenide (PdSe2) with high air stability is an emerging material that has robust in-plane anisotropy induced by its asymmetric pentagonal lattice structure. We have successfully prepared a few-layer PdSe2 using micromechanical exfoliation, and here we demonstrate the strong linear dichroism behavior of PdSe2 by polarization-resolved absorption spectra measurements. Such unique linear dichroism, endows the PdSe2 photodetector powerful ability to detect polarized light. The photodetector based on 5L PdSe2, as tested with polarization-dependent photocurrent mapping, exhibited competitive capability to detect polarized light, achieving a significant photocurrent on/off ratio (> 102), the quite fast response time (< 11 ms) and robust linearly dichroic ratios (/max//min ≈ 1.9 at 532 nm). These results are essential advance in the development of polarization-sensitive photodetector, a crucial step towards opening up a new avenue for the application of 2D optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun.2008, 146: 351–355.

    Article  CAS  Google Scholar 

  2. Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nat. Nanotechnol.2008, 3: 491–495.

    Article  CAS  Google Scholar 

  3. Vakil, A.; Engheta, N. Transformation optics using graphene. Science2011, 332: 1291–1294.

    Article  CAS  Google Scholar 

  4. Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol.2014, 9: 372–377.

    CAS  Google Scholar 

  5. Hong, T.; Chamlagain, B.; Lin, W. Z.; Chuang, H. J.; Pan, M. H.; Zhou, Z. X.; Xu, Y. Q. Polarized photocurrent response in black phosphorus field-effect transistors. Nanoscale2014, 6: 8978–8983.

    Article  CAS  Google Scholar 

  6. Yuan, H. T.; Liu, X. G.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G. J.; Hikita, Y. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nat. Nanotechnol.2015, 10: 707–713.

    CAS  Google Scholar 

  7. Zhang, E. Z.; Wang, P.; Li, Z.; Wang, H. F.; Song, C. Y.; Huang, C.; Chen, Z. G.; Yang, L.; Zhang, K.; Lu, S. et al. Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano2016, 10: 8067–8077.

    Article  CAS  Google Scholar 

  8. Zhang, E. Z.; Jin, Y. B.; Yuan, X.; Wang, W. Y.; Zhang, C.; Tang, L.; Liu, S. S.; Zhou, P.; Hu, W. D.; Xiu, F. X. ReS2-based field-effect transistors and photodetectors. Adv. Funct. Mater.2015, 25: 4076–4082.

    Article  CAS  Google Scholar 

  9. Wang, X. T.; Li, Y. T.; Huang, L.; Jiang, X. W.; Jiang, L.; Dong, H. L.; Wei, Z. M.; Li, J. B.; Hu, W. P. Short-wave near-infrared linear dichroism of two-dimensional germanium selenide. J. Am. Chem. Soc.2017, 139: 14976–14982.

    Article  CAS  Google Scholar 

  10. Oyedele, A. D.; Yang, S. Z.; Liang, L. B.; Puretzky, A. A.; Wang, K.; Zhang, J. J.; Yu, P.; Pudasaini, P. R.; Ghosh, A. W.; Liu, Z. et al. PdSe2: Pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc.2017, 139: 14090–14097.

    Article  CAS  Google Scholar 

  11. Long, M. S.; Wang, Y.; Wang, P.; Zhou, X. H.; Xia, H.; Luo, C.; Huang, S. Y.; Zhang, G. W.; Yan, H. G.; Fan, Z. Y. et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano2019, 13: 2511–2519.

    CAS  Google Scholar 

  12. Wu, D.; Guo, J. W.; Du, J.; Xia, C. X.; Zeng, L. H.; Tian, Y. Z.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. et al. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano2019, 13: 9907–9917.

    Article  CAS  Google Scholar 

  13. Zeng, L. H.; Chen, Q. M.; Zhang, Z. X.; Wu, D.; Yuan, H. Y.; Li, Y. Y.; Qarony, W.; Lau, S. P.; Luo, L. B.; Tsang, Y. H. Multilayered PdSe2/perovskite schottky junction for fast, self-powered, polarization-sensitive, broadband photodetectors, and image sensor application. Adv. Sci.2019, 6: 1901134.

    Article  CAS  Google Scholar 

  14. Sun, J. F.; Shi, H. L.; Siegrist, T.; Singh, D. J. Electronic, transport, and optical properties of bulk and mono-layer PdSe2. Appl. Phys. Lett.2015, 107: 153902.

    Article  Google Scholar 

  15. Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-like two-dimensional materials. Chem. Rev.2013, 113: 3766–3798.

    Article  CAS  Google Scholar 

  16. Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol.2014, 9: 768–779.

    Article  CAS  Google Scholar 

  17. Qiao, J. S.; Kong, X. H.; Hu, Z. X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun.2014, 5: 4475.

    Article  CAS  Google Scholar 

  18. O’Brien, M.; McEvoy, N.; Hanlon, D.; Hallam, T.; Coleman, J. N.; Duesberg, G. S. Mapping of low-frequency Raman modes in CVD-grown transition metal dichalcogenides: Layer number, stacking orientation and resonant effects. Sci. Rep.2016, 6: 19476.

    Article  Google Scholar 

  19. Puretzky, A. A.; Liang, L. B.; Li, X. F.; Xiao, K.; Wang, K.; Mahjouri-Samani, M.; Basile, L.; Idrobo, J. C.; Sumpter, B. G.; Meunier, V. et al. Low-frequency Raman fingerprints of two-dimensional metal dichalcogenide layer stacking configurations. ACS Nano2015, 9: 6333–6342.

    Article  CAS  Google Scholar 

  20. Zhao, Y. Y.; Luo, X.; Li, H.; Zhang, J.; Araujo, P. T.; Gan, C. K.; Wu, J.; Zhang, H.; Quek, S. Y.; Dresselhaus, M. S. et al. Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett.2013, 13: 1007–1015.

    Article  CAS  Google Scholar 

  21. Yu, J.; Kuang, X. F.; Gao, Y. J.; Wang, Y. P.; Chen, K. Q.; Ding, Z. K.; Liu, J.; Cong, C. X.; He, J.; Liu, Z. W. et al. Direct observation of the linear dichroism transition in two-dimensional palladium diselenide. Nano Lett.2020, 20: 1172–1182.

    Article  CAS  Google Scholar 

  22. Wu, J. X.; Mao, N. N.; Xie, L. M.; Xu, H.; Zhang, J. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew. Chem., Int. Ed.2015, 54: 2366–2369.

    Article  CAS  Google Scholar 

  23. Fang, H. H.; Hu, W. D. Photogating in low dimensional photodetectors. Adv. Sci.2017, 4, 1700323.

    Article  Google Scholar 

  24. Furchi, M. M.; Polyushkin, D. K.; Pospischil, A.; Mueller, T. Mechanisms of photoconductivity in atomically thin MoS2. Nano Lett.2014, 14: 6165–6170.

    Article  CAS  Google Scholar 

  25. Jo, S. H.; Kang, D. H.; Shim, J.; Jeon, J.; Jeon, M. H.; Yoo, G.; Kim, J.; Lee, J.; Yeom, G. Y.; Lee, S. et al. A high-performance WSe2/h-BN photodetector using a triphenylphosphine (pph3)-based n-doping technique. Adv. Mater.2016, 28: 4824–4831.

    CAS  Google Scholar 

  26. Wu, J. Y.; Chun, Y. T.; Li, S. P.; Zhang, T.; Wang, J. Z.; Shrestha, P. K.; Chu, D. P. Broadband MoS2 field-effect phototransistors: Ultrasensitive visible-light photoresponse and negative infrared photoresponse. Adv. Mater.2018, 30: 1705880.

    Google Scholar 

  27. Tian, Z.; Guo, C. L.; Zhao, M. X.; Li, R. R.; Xue, J. M. Two-dimensional SnS: A phosphorene analogue with strong in-plane electronic anisotropy. ACS Nano2017, 11: 2219–2226.

    Article  CAS  Google Scholar 

  28. Zhang, Z. D.; Yang, J. H.; Zhang, K.; Chen, S.; Mei, F. H.; Shen, G. Z. Anisotropic photoresponse of layered 2D SnS-based near infrared photodetectors. J. Mater. Chem. C2017, 5: 11288–11293.

    Article  CAS  Google Scholar 

  29. Freitag, M.; Low, T.; Xia, F. N.; Avouris, P. Photoconductivity of biased graphene. Nat. Photon.2013, 7: 53–59.

    Article  CAS  Google Scholar 

  30. Li, J. T.; Naiini, M. M.; Vaziri, S.; Lemme, M. C.; Östling, M. Inkjet printing of MoS2. Adv. Funct. Mater.2014, 24: 6524–6531.

    Article  CAS  Google Scholar 

  31. Perea-López, N.; Elías, A. L.; Berkdemir, A.; Castro-Beltran, A.; Guti—érrez, H. R.; Feng, S. M.; Lv, R. T.; Hayashi, T.; López-Urías, F.; Ghosh, S. et al. Photosensor device based on few-layered WS2 films. Adv. Funct. Mater.2013, 23: 5511–5517.

    Article  Google Scholar 

  32. Wu, J. B.; Cong, X.; Niu, S. Y.; Liu, F. X.; Zhao, H.; Du, Z. H.; Ravichandran, J.; Tan, P. H.; Wang, H. Linear dichroism conversion in quasi-1D perovskite chalcogenide. Adv. Mater.2019, 31: 1902118.

    Google Scholar 

  33. Yang, H.; Pan, L. F.; Wang, X. T.; Deng, H. X.; Zhong, M. Z.; Zhou, Z. Q.; Lou, Z.; Shen, G. Z.; Wei, Z. M. Mixed-valence-driven quasi-1D SnIISnIVS3 with highly polarization-sensitive UV–vis–NIR photoresponse. Adv. Funct. Mater.2019, 29: 1904416.

    Article  Google Scholar 

  34. Zhou, Z. Q.; Long, M. S.; Pan, L. F.; Wang, X. T.; Zhong, M. Z.; Blei, M.; Wang, J. L.; Fang, J. Z.; Tongay, S.; Hu, W. D. et al. Perpendicular optical reversal of the linear dichroism and polarized photodetection in 2D GeAs. ACS Nano2018, 12: 12416–12423.

    Article  CAS  Google Scholar 

  35. Wang, F.; Wang, Z. X.; Yin, L.; Cheng, R. Q.; Wang, J. J.; Wen, Y.; Shifa, T. A.; Wang, F. M.; Zhang, Y.; Zhan, X. Y. et al. 2D library beyond graphene and transition metal dichalcogenides: A focus on photodetection. Chem. Soc. Rev.2018, 47: 6296–6341.

    Article  CAS  Google Scholar 

  36. Xie, C.; Mak, C.; Tao, X. M.; Yan, F. Photodetectors based on two-dimensional layered materials beyond graphene. Adv. Funct. Mater.2017, 27: 1603886.

    Article  Google Scholar 

Download references

Acknowledgements

Y. P. L. would like to thank Prof. Wang Yunpeng for his useful discussions. This work was supported by the National Natural Science Foundation of China (No. 61775241), Youth Innovation Team (No. 2019012) of CSU, Hunan province key research and development project (No. 2019GK2233), the Science and Technology Innovation Basic Research Project of Shenzhen (No. JCYJ20180307151237242), and the Project of State Key Laboratory of High-Performance Complex Manufacturing, Central South University (No. ZZYJKT2020-12). Z. W. L. acknowledges the funding support from the Australian Research Council (ARC Discovery Projects, DP180102976).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, J., Yu, J., Cao, L. et al. High-performance polarization-sensitive photodetector based on a few-layered PdSe2 nanosheet. Nano Res. 13, 1780–1786 (2020). https://doi.org/10.1007/s12274-020-2804-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2804-y

Keywords

Navigation