Skip to main content
Log in

Unadulterated carbon as robust multifunctional electrocatalyst for overall water splitting and oxygen transformation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Developing the highly efficient and durable non-precious metal electrocatalysts by taking advantage of inexpensive and abundant resources is of paramount importance for the widespread application of energy conversion and storage techniques such as fuel cells and metal-air batteries. Herein, the sponge-like unadulterated carbontube-graphene complexes (D/G-CTs-1,000) with multifarious intrinsic defect active sites are fabricated by boric acid-hydrothermal and pyrolysis treatments. The close contact or juncture between open nanotubes and few-layer graphene in D/G-CTs-1,000 constructs the hierarchical networks with plentiful channels, the larger surface area and outstanding conductivity. As a result, the as-prepared D/G-CTs-1,000 electrocatalyst exhibits an excellent trifunctional electrocatalytic performance for oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The primary Zn-air batteries and overall water splitting system using D/G-CTs-1,000 as the electrode materials delivers higher power density outperforming the advanced Pt/C-based batteries and the overall water splitting performance comparable to those using the non-precious metal/carbon-based materials as electrode. This work provides a universal and efficient synthetic strategy to produce the unadulterated carbons with high activity and long-time durability as trifunctional electrocatalysts and promote the widespread applications of metal-free electrocatalysts in sustainable energy conversion technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Steele, B. C. H.; Heinzel, A. Materials for fuel-cell technologies. Nature2001, 414, 345–352.

    CAS  Google Scholar 

  2. Liu, X. E.; Dai, L. M. Carbon-based metal-free catalysts. Nat. Rev. Mater.2016, 1, 16064.

    CAS  Google Scholar 

  3. Zhu, J. W.; Huang, Y. P.; Mei, W. C.; Zhao, C. Y.; Zhang, C. T.; Zhang, J.; Amiinu, I. S.; Mu, S. C. Effects of intrinsic pentagon defects on electrochemical reactivity of carbon nanomaterials. Angew. Chem.2019, 131, 3899–3904.

    Google Scholar 

  4. Yu, J. Y.; Li, G. X.; Liu, H.; Zeng, L. L.; Zhao, L. L.; Jia, J.; Zhang, M. Y.; Zhou, W. J.; Liu, H.; Hu, Y. Y. Electrochemical flocculation integrated hydrogen evolution reaction of Fe@N-doped carbon nanotubes on iron foam for ultralow voltage electrolysis in neutral media. Adv. Sci.2019, 6, 1901458.

    CAS  Google Scholar 

  5. Zhou, W. J.; Jia, J.; Lu, J.; Yang, L. J.; Hou, D. M.; Li, G. Q.; Chen, S. W. Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy2016, 28, 29–43.

    CAS  Google Scholar 

  6. Xu, H. M.; Ci, S. Q.; Ding, Y. C.; Wang, G. X.; Wen, Z. H. Recent advances in precious metal-free bifunctional catalysts for electrochemical conversion systems. J. Mater. Chem. A2019, 7, 8006–8029.

    CAS  Google Scholar 

  7. Zhang, J.; Sun, Y. M.; Zhu, J. W.; Kou, Z. K.; Hu, P.; Liu, L.; Li, S. Z.; Mu, S. C.; Huang, Y. H. Defect and pyridinic nitrogen engineering of carbon-based metal-free nanomaterial toward oxygen reduction. Nano Energy2018, 52, 307–314.

    CAS  Google Scholar 

  8. Wu, X.; Meng, G.; Liu, W. X.; Li, T.; Yang, Q.; Sun, X. M.; Liu, J. F. Metal-organic framework-derived, Zn-doped porous carbon polyhedra with enhanced activity as bifunctional catalysts for rechargeable zinc-air batteries. Nano Res.2018, 11, 163–173.

    CAS  Google Scholar 

  9. Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater.2005, 4, 366–377.

    Google Scholar 

  10. Wang, X. Q.; He, J. R.; Yu, B.; Sun, B. C.; Yang, D. X.; Zhang, X. J.; Zhang, Q. H.; Zhang, W. L.; Gu, L.; Chen, Y. F. CoSe2 nanoparticles embedded MOF-derived Co-N-C nanoflake arrays as efficient and stable electrocatalyst for hydrogen evolution reaction. Appl. Catal. B: Environ.2019, 258, 117996.

    CAS  Google Scholar 

  11. Zhou, W. J.; Lu, J.; Zhou, K.; Yang, L. J.; Ke, Y. T.; Tang, Z. H.; Chen, S. W. CoSe2 nanoparticles embedded defective carbon nanotubes derived from MOFs as efficient electrocatalyst for hydrogen evolution reaction. Nano Energy2016, 28, 143–150.

    CAS  Google Scholar 

  12. Zhou, Y. C.; Leng, Y. H.; Zhou, W. J.; Huang, J. L.; Zhao, M. W.; Zhan, J.; Feng, C. H.; Tang, Z. H.; Chen, S. W.; Liu, H. Sulfur and nitrogen self-doped carbon nanosheets derived from peanut root nodules as high-efficiency non-metal electrocatalyst for hydrogen evolution reaction. Nano Energy2015, 16, 357–366.

    CAS  Google Scholar 

  13. Cai, P. W.; Li, Y.; Wang, G. X.; Wen, Z. H. Alkaline-acid Zn-H2O fuel cell for the simultaneous generation of hydrogen and electricity. Angew. Chem.2018, 130, 3974–3979.

    Google Scholar 

  14. Kong, F. T.; Fan, X. H.; Kong, A. G.; Zhou, Z. Q.; Zhang, X. Y.; Shan, Y. K. Covalent phenanthroline framework derived FeS@Fe3C composite nanoparticles embedding in N-S-codoped carbons as highly efficient trifunctional electrocatalysts. Adv. Funct. Mater.2018, 28, 1803973.

    Google Scholar 

  15. Paul, R.; Zhu, L.; Chen, H.; Qu, J.; Dai, L. M. Recent advances in carbon-based metal-free electrocatalysts. Adv. Mater.2019, 31, 1806403.

    Google Scholar 

  16. Lu, Y. J.; Hou, W. Q.; Yang, D. X.; Chen, Y. F. CoP nanosheets in-situ grown on N-doped graphene as an efficient and stable bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. Electrochim. Acta2019, 307, 543–552.

    CAS  Google Scholar 

  17. Dai, L. M.; Xue, Y. H.; Qu, L. T.; Choi, H. J.; Baek, J. B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev.2015, 115, 4823–4892.

    CAS  Google Scholar 

  18. Shi, Q.; Wang, Y. D.; Wang, Z. M.; Lei, Y. P.; Wang, B.; Wu, N.; Han, C.; Xie, S.; Gou, Y. Z. Three-dimensional (3D) interconnected networks fabricated via in-situ growth of N-doped graphene/carbon nanotubes on co-containing carbon nanofibers for enhanced oxygen reduction. Nano Res.2016, 9, 317–328.

    CAS  Google Scholar 

  19. Wang, H. Q.; Wang, X. Q.; Yang, D. X.; Zheng, B. J.; Chen, Y. F. Co0.85Se hollow nanospheres anchored on N-doped graphene nanosheets as highly efficient, nonprecious electrocatalyst for hydrogen evolution reaction in both acid and alkaline media. J. Power Sources2018, 400, 232–241.

    CAS  Google Scholar 

  20. Hu, Y.; Yu, B.; Li, W. X.; Ramadoss, M.; Chen, Y. F. W2C nanodot-decorated CNT networks as a highly efficient and stable electrocatalyst for hydrogen evolution in acidic and alkaline media. Nanoscale2019, 11, 4876–4884.

    CAS  Google Scholar 

  21. Lu, N.; Wang, L. Q.; Lv, M.; Tang, Z. S.; Fan, C. H. Graphene-based nanomaterials in biosystems. Nano Res.2019, 12, 247–264.

    CAS  Google Scholar 

  22. Zhang, M. T.; Chen, J. X.; Li, H.; Cai, P. W.; Li, Y.; Wen, Z. H. Ru-RuO2/CNT hybrids as high-activity pH-universal electrocatalysts for water splitting within 0.73 V in an asymmetric-electrolyte electrolyzer. Nano Energy2019, 61, 576–583.

    CAS  Google Scholar 

  23. Yan, X. C.; Jia, Y.; Odedairo, T.; Zhao, X. J.; Jin, Z.; Zhu, Z. H.; Yao, X. D. Activated carbon becomes active for oxygen reduction and hydrogen evolution reactions. Chem. Commun.2016, 52, 8156–8159.

    CAS  Google Scholar 

  24. Inagaki, M.; Toyoda, M.; Soneda, Y.; Morishita, T. Nitrogen-doped carbon materials. Carbon2018, 132, 104–140.

    CAS  Google Scholar 

  25. Qu, L. T.; Liu, Y.; Baek, J. B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano2010, 4, 1321–1326.

    CAS  Google Scholar 

  26. Liu, L. Z.; Zeng, G.; Chen, J. X.; Bi, L. L.; Dai, L. M.; Wen, Z. H. N-doped porous carbon nanosheets as pH-universal ORR electrocatalyst in various fuel cell devices. Nano Energy2018, 49, 393–402.

    CAS  Google Scholar 

  27. Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science2011, 332, 1537–1541.

    CAS  Google Scholar 

  28. Zhang, L. Z.; Jia, Y.; Gao, G. P.; Yan, X. C.; Chen, N.; Chen, J.; Soo, M. T.; Wood, B.; Yang, D. J.; Du, A. J. et al. Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions. Chem2018, 4, 285–297.

    CAS  Google Scholar 

  29. Ortiz-Medina, J.; Wang, Z. P.; Cruz-Silva, R.; Morelos-Gomez, A.; Wang, F.; Yao, X. D.; Terrones, M.; Endo, M. Catalytic nanocarbons: Defect engineering and surface functionalization of nanocarbons for metal-free catalysis (Adv. Mater. 13/2019). Adv. Mater.2019, 31, 1970096.

    Google Scholar 

  30. Kong, F. T.; Qiao, Y.; Zhang, C. Q.; Li, R. J.; Cheng, T. T.; Kong, A. G.; Shan, Y. K. Bimetallic Ni-Co composites anchored on a wool ball-like carbon framework as high-efficiency bifunctional electrodes for rechargeable Zn-air batteries. Catal. Sci. Technol.2019, 9, 3469–3481.

    CAS  Google Scholar 

  31. Fan, X. H.; Kong, F. T.; Kong, A. G.; Chen, A. L.; Zhou, Z. Q.; Shan, Y. K. Covalent porphyrin framework-derived Fe2P@Fe4N-coupled nanoparticles embedded in N-doped carbons as efficient trifunctional electrocatalysts. ACS Appl. Mater. Interfaces2017, 9, 32840–32850.

    CAS  Google Scholar 

  32. Jia, Y.; Zhang, L. Z.; Du, A. J.; Gao, G. P.; Chen, J.; Yan, X. C.; Brown, C. L.; Yao, X. D. Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater.2016, 28, 9532–9538.

    CAS  Google Scholar 

  33. Liu, Z. J.; Zhao, Z. H.; Wang, Y. Y.; Dou, S.; Yan, D. F.; Liu, D. D.; Xia, Z. H.; Wang, S. Y. In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis. Adv. Mater.2017, 29, 1606207.

    Google Scholar 

  34. Sun, T.; Zhang, G. Q.; Xu, D.; Lian, X.; Li, H. X.; Chen, W.; Su, C. L. Defect chemistry in 2D materials for electrocatalysis. Mater. Today Energy2019, 12, 215–238.

    Google Scholar 

  35. Yan, X. C.; Jia, Y.; Yao, X. D. Defects on carbons for electrocatalytic oxygen reduction. Chem. Soc. Rev.2018, 47, 7628–7658.

    CAS  Google Scholar 

  36. Xue, L. F.; Li, Y. C.; Liu, X. F.; Liu, Q. T.; Shang, J. X.; Duan, H. P.; Dai, L. M.; Shui, J. L. Zigzag carbon as efficient and stable oxygen reduction electrocatalyst for proton exchange membrane fuel cells. Nat. Commun.2018, 9, 3819.

    Google Scholar 

  37. Tang, C.; Wang, H. F.; Chen, X.; Li, B. Q.; Hou, T. Z.; Zhang, B. S.; Zhang, Q.; Titirici, M. M.; Wei, F. Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv. Mater.2016, 28, 6845–6851.

    CAS  Google Scholar 

  38. Zhang, L. P.; Xu, Q.; Niu, J. B.; Xia, Z. H. Role of lattice defects in catalytic activities of graphene clusters for fuel cells. Phys. Chem. Chem. Phys.2015, 17, 16733–16743.

    CAS  Google Scholar 

  39. Xu, L.; Jiang, Q. Q.; Xiao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem., Int. Ed.2016, 55, 5277–5281.

    CAS  Google Scholar 

  40. Jiang, Y. F.; Yang, L. J.; Sun, T.; Zhao, J.; Lyu, Z. Y.; Zhuo, O.; Wang, X. Z.; Wu, Q.; Ma, J.; Hu, Z. Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS Catal.2015, 5, 6707–6712.

    CAS  Google Scholar 

  41. Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater.2011, 10, 424–428.

    CAS  Google Scholar 

  42. Ding, Y. L.; Kopold, P.; Hahn, K.; van Aken, P. A.; Maier, J.; Yu, Y. Facile solid-state growth of 3D well-interconnected nitrogen-rich carbon nanotube-graphene hybrid architectures for lithium-sulfur batteries. Adv. Funct. Mater.2016, 26, 1112–1119.

    CAS  Google Scholar 

  43. Wang, G. X.; Yang, J.; Park, J.; Gou, X. L.; Wang, B.; Liu, H.; Yao, J. Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C2008, 112, 8192–8195.

    CAS  Google Scholar 

  44. Jia, N.; Weng, Q.; Shi, Y. R.; Shi, X. Y.; Chen, X. B.; Chen, P.; An, Z. W.; Chen, Y. N-doped carbon nanocages: Bifunctional electrocatalysts for the oxygen reduction and evolution reactions. Nano Res.2018, 11, 1905–1916.

    CAS  Google Scholar 

  45. Lu, S. Y.; Jin, M.; Zhang, Y.; Niu, Y. B.; Gao, J. C.; Li, C. M. Chemically exfoliating biomass into a graphene-like porous active carbon with rational pore structure, good conductivity, and large surface area for high-performance supercapacitors. Adv. Energy Mater.2018, 8, 1702545.

    Google Scholar 

  46. Xu, B.; Yue, S. F.; Sui, Z. Y.; Zhang, X. T.; Hou, S. S.; Cao, G. P.; Yang, Y. S. What is the choice for supercapacitors: Graphene or graphene oxide? Energy Environ. Sci.2011, 4, 2826–2830.

    CAS  Google Scholar 

  47. Fan, L. Z.; Qiao, S. Y.; Song, W. L.; Wu, M.; He, X. B.; Qu, X. H. Effects of the functional groups on the electrochemical properties of ordered porous carbon for supercapacitors. Electrochim. Acta2013, 105, 299–304.

    CAS  Google Scholar 

  48. Fan, L. Z.; Liu, J. L.; Ud-Din, R.; Yan, X. Q.; Qu, X. H. The effect of reduction time on the surface functional groups and supercapacitive performance of graphene nanosheets. Carbon2012, 50, 3724–3730.

    CAS  Google Scholar 

  49. Osborn, T. H.; Farajian, A. A. Silicene nanoribbons as carbon monoxide nanosensors with molecular resolution. Nano Res.2014, 7, 945–952.

    CAS  Google Scholar 

  50. van Tam, T.; Kang, S. G.; Babu, K. F.; Oh, E. S.; Lee, S. G.; Choi, W. M. Synthesis of B-doped graphene quantum dots as a metal-free electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A2017, 5, 10537–10543.

    CAS  Google Scholar 

  51. Cai, P. W.; Peng, X. X.; Huang, J. H.; Jia, J. C.; Hu, X.; Wen, Z. H. Covalent organic frameworks derived hollow structured N-doped noble carbon for asymmetric-electrolyte Zn-air battery. Sci. China Chem.2019, 62, 385–392.

    CAS  Google Scholar 

  52. Zhang, H.; Qiao, H.; Wang, H. Y.; Zhou, N.; Chen, J. J.; Tang, Y. G.; Li, J. S.; Huang, C. H. Nickel cobalt oxide/carbon nanotubes hybrid as a high-performance electrocatalyst for metal/air battery. Nanoscale2014, 6, 10235–10242.

    CAS  Google Scholar 

  53. Jin, H. Y.; Wang, J.; Su, D. F.; Wei, Z. Z.; Pang, Z. F.; Wang, Y. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc.2015, 137, 2688–2694.

    CAS  Google Scholar 

  54. Huang, S. Y.; Ganesan, P.; Park, S.; Popov, B. N. Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications. J. Am. Chem. Soc.2009, 131, 13898–13899.

    CAS  Google Scholar 

  55. Liu, L.; Yang, X. F.; Ma, N.; Liu, H. T.; Xia, Y. Z.; Chen, C. M.; Yang, D. J.; Yao, X. D. Scalable and cost-effective synthesis of highly efficient Fe2N-based oxygen reduction catalyst derived from seaweed biomass. Small2016, 12, 1295–1301.

    CAS  Google Scholar 

  56. Wang, X. Q.; Chen, Y. F.; Yu, B.; Wang, Z. G.; Wang, H. Q.; Sun, B. C.; Li, W. X.; Yang, D. X.; Zhang, W. L. Hierarchically porous W-doped CoP nanoflake arrays as highly efficient and stable electrocatalyst for pH-universal hydrogen evolution. Small2019, 15, 1902613.

    Google Scholar 

  57. Wang, H. Q.; Wang, X. Q.; Zheng, B. J.; Yang, D. X.; Zhang, W. L.; Chen, Y. F. Self-assembled Ni2P/FeP heterostructural nanoparticles embedded in N-doped graphene nanosheets as highly efficient and stable multifunctional electrocatalyst for water splitting. Electrochim. Acta2019, 318, 449–459.

    CAS  Google Scholar 

  58. Li, Y. X.; Liang, L.; Liu, C. P.; Li, Y.; Xing, W.; Sun, J. Q. Self-healing proton-exchange membranes composed of nafion-poly(vinyl alcohol) complexes for durable direct methanol fuel cells. Adv. Mater.2018, 30, 1707146.

    Google Scholar 

  59. Li, Z. H.; Shao, M. F.; Yang, Q. H.; Tang, Y.; Wei, M.; Evans, D. G.; Duan, X. Directed synthesis of carbon nanotube arrays based on layered double hydroxides toward highly-efficient bifunctional oxygen electrocatalysis. Nano Energy2017, 37, 98–107.

    Google Scholar 

  60. Chen, S.; Zhao, L. L.; Ma, J. Z.; Wang, Y. Q.; Dai, L. M.; Zhang, J. T. Edge-doping modulation of N, P-codoped porous carbon spheres for high-performance rechargeable Zn-air batteries. Nano Energy2019, 60, 536–544.

    CAS  Google Scholar 

  61. Tong, J. H.; Ma, W. M.; Bo, L. L.; Li, T.; Li, W. Y.; Li, Y. L.; Zhang, Q. Nitrogen-doped hollow carbon spheres as highly effective multifunctional electrocatalysts for fuel cells, Zn-air batteries, and water-splitting electrolyzers. J. Power Sources2019, 441, 227166.

    CAS  Google Scholar 

  62. Ma, Z.; Wang, K. X.; Qiu, Y. F.; Liu, X. Z.; Cao, C. Y.; Feng, Y. J.; Hu, P. A. Nitrogen and sulfur co-doped porous carbon derived from bio-waste as a promising electrocatalyst for zinc-air battery. Energy2018, 143, 43–55.

    CAS  Google Scholar 

  63. Han, H. J.; Chao, S. J.; Bai, Z. Y.; Wang, X. B.; Yang, X. L.; Qiao, J. L.; Chen, Z. W.; Yang, L. Metal-organic-framework-derived Co nanoparticles deposited on N-doped bimodal mesoporous carbon nanorods as efficient bifunctional catalysts for rechargeable zinc-air batteries. ChemElectroChem2018, 5, 1868–1873.

    CAS  Google Scholar 

  64. Wu, M. C.; Li, C. L.; Liu, R. Freestanding 1D hierarchical porous Fe-N-doped carbon nanofibers as efficient oxygen reduction catalysts for Zn-air batteries. Energy Technol.2019, 7, 1800790.

    Google Scholar 

  65. Li, T. T.; Lu, Y. X.; Zhao, S. S.; Gao, Z. D.; Song, Y. Y. Co3O4-doped Co/CoFe nanoparticles encapsulated in carbon shells as bifunctional electrocatalysts for rechargeable Zn-air batteries. J. Mater. Chem. A2018, 6, 3730–3737.

    CAS  Google Scholar 

  66. Qu, K. G.; Zheng, Y.; Dai, S.; Qiao, S. Z. Graphene oxide-polydopamine derived N, S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution. Nano Energy2016, 19, 373–381.

    CAS  Google Scholar 

  67. Yin, J.; Li, Y. X.; Lv, F.; Lu, M.; Sun, K.; Wang, W.; Wang, L.; Cheng, F. Y.; Li, Y. F.; Xi, P. X. Oxygen vacancies dominated NiS2/CoS2 interface porous nanowires for portable Zn-air batteries driven water splitting devices. Adv. Mater.2017, 29, 1704681.

    Google Scholar 

  68. Zhang, X. Y.; Liu, J. X.; Qiao, Y.; Kong, A. G.; Li, R. J.; Shan, Y. K. Fe-boosting Sn-based dual-shell nanostructures from new covalent porphyrin frameworks as efficient electrocatalysts for oxygen reduction and zinc-air batteries. Electrochim. Acta2019, 320, 134593.

    CAS  Google Scholar 

  69. Yang, H. B.; Miao, J. W.; Hung, S. F.; Chen, J. Z.; Tao, H. B.; Wang, X. Z.; Zhang, L. P.; Chen, R.; Gao, J. J.; Chen, H. M. et al. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Sci. Adv.2016, 2, e1501122.

    Google Scholar 

  70. Meng, T.; Hao, Y. N.; Zheng, L. R.; Cao, M. H. Organophosphoric acid-derived CoP quantum dots@S,N-codoped graphite carbon as a trifunctional electrocatalyst for overall water splitting and Zn-air batteries. Nanoscale2018, 10, 14613–14626.

    CAS  Google Scholar 

  71. Pan, Y.; Liu, S. J.; Sun, K. A.; Chen, X.; Wang, B.; Wu, K. L.; Cao, X.; Cheong, W. C.; Shen, R. A.; Han, A. J. et al. A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site: A superior trifunctional catalyst for overall water splitting and Zn-air batteries. Angew. Chem., Int. Ed.2018, 57, 8614–8618.

    CAS  Google Scholar 

  72. Wang, B.; Xu, L.; Liu, G. P.; Zhang, P. F.; Zhu, W. S.; Xia, J. X.; Li, H. M. Biomass willow catkin-derived Co3O4/N-doped hollow hierarchical porous carbon microtubes as an effective tri-functional electrocatalyst. J. Mater. Chem. A2017, 5, 20170–20179.

    CAS  Google Scholar 

  73. Zhang, G.; Feng, Y. S.; Lu, W. T.; He, D.; Wang, C. Y.; Li, Y. K.; Wang, X. Y.; Cao, F. F. Enhanced catalysis of electrochemical overall water splitting in alkaline media by Fe doping in Ni3S2 nanosheet arrays. ACS Catal.2018, 8, 5431–5441.

    CAS  Google Scholar 

  74. Han, L. L.; Guo, L. M.; Dong, C. Q.; Zhang, C.; Gao, H.; Niu, J. Z.; Peng, Z. Q.; Zhang, Z. H. Ternary mesoporous cobalt-iron-nickel oxide efficiently catalyzing oxygen/hydrogen evolution reactions and overall water splitting. Nano Res.2019, 12, 2281–2287.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to financial support from the National Natural Science Foundation of China (No. 21303058), the Natural Science Foundation of Shanghai (No. 13ZR1412400), the Science and Technology Commission of Shanghai Municipality (Nos. 11JC1403400 and 14231200300).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aiguo Kong or Yongkui Shan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, F., Qiao, Y., Zhang, C. et al. Unadulterated carbon as robust multifunctional electrocatalyst for overall water splitting and oxygen transformation. Nano Res. 13, 401–411 (2020). https://doi.org/10.1007/s12274-020-2622-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2622-2

Keywords

Navigation