Skip to main content
Log in

Intriguing anti-superbug Cu2O@ZrP hybrid nanosheet with enhanced antibacterial performance and weak cytotoxicity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In view of it’s strong antibacterial function and minor toxicity, cuprous oxide (Cu2O) is frequently used in various broad-spectrum antibacterial reagents. Nonetheless the undesirable effects of superbugs still remain challenging. In this research, a chemical deposition approach is used to prepare a Cu2O@ZrP composite with nanosheet configuration demonstrating excellent dispersibility and antibacterial traits. From systematic analysis, it was inffered that the content of copper in the nanosheet was about 57–188 mg/g while the average thickness of the nanosheets Cu2O formed on ZrP is approximately 0.8 nm. The results of the minimal inhibitory concentration (MIC) revealed that an extremely low loading of Cu2O in Cu2O@ZrP nanosheet can lead to exceptional antibacterial activity. Examined on two various superbugs; i.e. methicillin-resistant staphylococcus aureus (MRSA) and vancomycin-resistant enterococcus (VRE), the composite nanosheet reagent performed over 99% microbial reduction. More intesetingly, the cell growth rate of the Cu2O@ZrP nanosheet was determined to be 20% lower than that of the neat Cu2O, manifesting a weaker cytotoxicity. This unique hybrid nanosheet with intriguing anti-superbug performance promises highly efficient protection for the fabrics, battledress, and medical textiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Raghupathi, K. R.; Koodali, R. T.; Manna, A. C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 2011, 27, 4020–4028.

    Article  Google Scholar 

  2. Dong, C. X.; He, G. H.; Zheng, W. J.; Bian, T. F.; Li, M.; Zhang, D. W. Study on antibacterial mechanism of Mg(OH)2 nanoparticles. Mater. Lett. 2014, 134, 286–289.

    Article  Google Scholar 

  3. Qiu, K. Y.; Durham, P. G.; Anselmo, A. C. Inorganic nanoparticles and the microbiome. Nano Res. 2018, 11, 4936–4954.

    Article  Google Scholar 

  4. Perelshtein, I.; Lipovsky, N.; Perkas N.; Gedanken, A.; Moschini, E.; Mantecca, P. The influence of the crystalline nature of nano-metal oxides on their antibacterial and toxicity properties. Nano Res. 2015, 8, 695–707.

    Article  Google Scholar 

  5. Asati, A.; Santra, S.; Kaittanis, C.; Perez, J. M. Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano 2010, 4, 5321–5331.

    Article  Google Scholar 

  6. Chudasama, B.; Vala, A. K.; Andhariya, N.; Upadhyay, R. V.; Mehta, R. V. Enhanced antibacterial activity of bifunctional Fe3O4-Ag core–shell nanostructures. Nano Res. 2009, 2, 955–965.

    Article  Google Scholar 

  7. AshaRani, P. V.; Mun, G. L. K.; Hande, M. P.; Valiyaveettil, S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 2009, 3, 279–290.

    Article  Google Scholar 

  8. Wu, Y. A.; Li, L.; Li, Z.; Kinaci, A.; Chan, M. K. Y.; Sun, Y. G.; Guest, J. R.; McNulty, I.; Rajh, T.; Liu, Y. Z. Visualizing redox dynamics of a single Ag/AgCl heterogeneous nanocatalyst at atomic resolution. ACS Nano 2016, 10, 3738–3746.

    Article  Google Scholar 

  9. Zhou, Y. Z.; Chen, R.; He, T. T.; Xu, K.; Du, D.; Zhao, N.; Cheng, X. N.; Yang, J.; Shi, H. F.; Lin, Y. H. Biomedical potential of ultrafine Ag/AgCl nanoparticles coated on graphene with special reference to antimicrobial performances and burn wound healing. ACS Appl. Mater. Interfaces 2016, 8, 15067–15075.

    Article  Google Scholar 

  10. Yin, M.; Wu, C. K.; Lou, Y. B.; Burda, C.; Koberstein, J. T.; Zhu, Y. M.; O’Brien, S. Copper oxide nanocrystals. J. Am. Chem. Soc. 2005, 127, 9506–9511.

    Article  Google Scholar 

  11. Liu, L. M.; Yang, W. Y.; Sun, W. Z.; Li, Q.; Shang, J. K. Creation of Cu2O@TiO2 composite photocatalysts with p-n heterojunctions formed on exposed Cu2O facets, their energy band alignment study, and their enhanced photocatalytic activity under illumination with visible light. ACS Appl. Mater. Interfaces 2015, 7, 1465–1476.

    Article  Google Scholar 

  12. Malka, E.; Perelshtein, I.; Lipovsky, A.; Shalom, Y.; Naparstek, L.; Perkas, N.; Patick, T.; Lubart, R.; Nitzan, Y.; Banin, E. et al. Eradication of multi-drug resistant bacteria by a novel Zn-doped CuO nanocomposite. Small 2013, 9, 4069–4076.

    Article  Google Scholar 

  13. Giannousi, K.; Sarafidis, G.; Mourdikoudis, S.; Pantazaki, A.; Dendrinou- Samara, C. Selective synthesis of Cu2O and Cu/Cu2O NPs: Antifungal activity to yeast Saccharomyces cerevisiae and DNA interaction. Inorg. Chem. 2014, 53, 9657–9666.

    Article  Google Scholar 

  14. Yao, K. X.; Yin, X. M.; Wang, T. H.; Zeng, H. C. Synthesis, self-assembly, disassembly, and reassembly of two types of Cu2O nanocrystals unifaceted with {001} or {110} planes. J. Am. Chem. Soc. 2010, 132, 6131–6144.

    Article  Google Scholar 

  15. Susman, M. D.; Feldman, Y.; Vaskevich, A.; Rubinstein, I. Chemical deposition of Cu2O nanocrystals with precise morphology control. ACS Nano 2014, 8, 162–174.

    Article  Google Scholar 

  16. Sui, Y. M.; Fu, W. Y.; Yang, H. B.; Zeng, Y.; Zhang, Y. Y.; Zhao, Q.; Li, Y. N.; Zhou, X. M.; Leng, Y.; Li, M. H. et al. Low temperature synthesis of Cu2O crystals: Shape evolution and growth mechanism. Cryst. Growth Des. 2010, 10, 99–108.

    Article  Google Scholar 

  17. Siegfried, M. J.; Choi, K. S. Elucidating the effect of additives on the growth and stability of Cu2O surfaces via shape transformation of pre-grown crystals. J. Am. Chem. Soc. 2006, 128, 10356–10357.

    Article  Google Scholar 

  18. Ren, J.; Wang, W. Z.; Sun, S. M.; Zhang, L.; Wang, L.; Chang, J. Crystallography facet-dependent antibacterial activity: The case of Cu2O. Ind. Eng. Chem. Res. 2011, 50, 10366–10369.

    Article  Google Scholar 

  19. Pang, H.; Gao, F.; Lu, Q. Y. Morphology effect on antibacterial activity of cuprous oxide. Chem. Commun. 2009, 1076–1078.

  20. Radi, A.; Pradhan, D.; Sohn, Y.; Leung, K. T. Nanoscale shape and size control of cubic, cuboctahedral, and octahedral Cu-Cu2O core–shell nanoparticles on Si(100) by one-step, templateless, capping-agent-free electrodeposition. ACS Nano 2010, 4, 1553–1560.

    Article  Google Scholar 

  21. Stankic, S.; Suman, S.; Haque, F.; Vidic, J. Pure and multi metal oxide nanoparticles: Synthesis, antibacterial and cytotoxic properties. J. Nanobiotechnol. 2016, 14, 73.

    Article  Google Scholar 

  22. Sun, S. D. Recent advances in hybrid Cu2O-based heterogeneous nano-structures. Nanoscale 2015, 7, 10850–10882.

    Article  Google Scholar 

  23. Chen, G. Y.; Chen, T.; Hou, K.; Ma, W. J.; Tebyetekerwa, M.; Cheng, Y.; Weng, W.; Zhu, M. F. Robust, hydrophilic graphene/cellulose nanocrystal fiber-based electrode with high capacitive performance and conductivity. Carbon 2018, 127, 218–227.

    Article  Google Scholar 

  24. Wang, D.; Kan, Y. C.; Yu, X. J.; Liu, J. J.; Song, L.; Hu, Y. In situ loading ultra-small Cu2O nanoparticles on 2D hierarchical TiO2-graphene oxide dual-nanosheets: Towards reducing fire hazards of unsaturated polyester resin. J. Hazard. Mater. 2016, 320, 504–512.

    Article  Google Scholar 

  25. Lin, Y. F.; Wan, H.; Chen, F. S.; Liu, X. H.; Ma, R. Z.; Sasaki, T. Two-dimensional porous cuprous oxide nanoplatelets derived from metal-organic frameworks (MOFs) for efficient photocatalytic dye degradation under visible light. Dalton Trans. 2018, 47, 7694–7700.

    Article  Google Scholar 

  26. Hrenovic, J.; Milenkovic, J.; Daneu, N.; Kepcija, R. M.; Rajic, N. Antimicrobial activity of metal oxide nanoparticles supported onto natural clinoptilolite. Chemosphere 2012, 88, 1103–1107.

    Article  Google Scholar 

  27. Cai, R.; Yang, D.; Wu, J.; Zhang, L. Q.; Wu, C. C.; Chen, X. G.; Wang, Y. Y.; Wan, S.; Hou, F. W.; Yan, Q. Y. et al. Fabrication of ultrathin Zn(OH)2 nanosheets as drug carriers. Nano Res. 2016, 9, 2520–2530.

    Article  Google Scholar 

  28. Xiao, H. P.; Liu, S. H. Zirconium phosphate (ZrP)-based functional materials: Synthesis, properties and applications. Mater. Design 2018, 755, 19–35.

    Article  Google Scholar 

  29. Shao, W.; Liu, X. F.; Min, H. H.; Dong, G. H.; Feng, Q. Y.; Zuo, S. L. Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite. ACS Appl. Mater. Interfaces 2015, 7, 6966–6973.

    Article  Google Scholar 

  30. Madadrang, C. J.; Kim, H. Y.; Gao, G. H.; Wang, N.; Zhu, J.; Feng, H.; Gorring, M.; Kasner, M. L.; Hou, S. F. Adsorption behavior of EDTA-graphene oxide for Pb(II) removal. ACS Appl. Mater. Interfaces 2012, 4, 1186–1193.

    Article  Google Scholar 

  31. Gao, J. Y.; Wang, M. Z.; Wang, F. Y. K.; Du, J. Z. Synthesis and mechanism insight of a peptide-grafted hyperbranched polymer nanosheet with weak positive charges but excellent intrinsically antibacterial efficacy. Biomacromolecules 2016, 17, 2080–2086.

    Article  Google Scholar 

  32. Dupont, D.; Brullot, W.; Bloemen, M.; Verbiest, T.; Binnemans, K. Selective uptake of rare earths from aqueous solutions by EDTA-functionalized magnetic and nonmagnetic nanoparticles. ACS Appl. Mater. Interfaces 2014, 7, 4980–4988.

    Article  Google Scholar 

  33. Nabi, S. A.; Naushad, M.; Bushra, R. A new hybrid EDTA-zirconium phosphate cation-exchanger: Synthesis, characterization and adsorption behaviour for environmental monitoring. Adsorpt. Sci. Technol. 2009, 27, 423–434.

    Article  Google Scholar 

  34. Xu, J. S.; Xue, D. F. Five branching growth patterns in the cubic crystal system: A direct observation of cuprous oxide microcrystals. Acta Mater. 2007, 55, 2397–2406.

    Article  Google Scholar 

  35. Musho, T. D.; Wildfire, C.; Houlihan, N. M.; Sabolsky, E. M.; Shekhawat, D. Study of Cu2O particle morphology on microwave field enhancement. Mater. Chem. Phys. 2018, 276, 278–284.

    Article  Google Scholar 

  36. Zhou, L. S.; Shen, F. P.; Tian, X. K.; Wang, D. H.; Zhang, T.; Chen, W. Stable Cu2O nanocrystals grown on functionalized graphene sheets and room temperature H2S gas sensing with ultrahigh sensitivity. Nanoscale 2013, 5, 1564–1569.

    Article  Google Scholar 

  37. Liang, Y. H.; Shang, L.; Bian, T.; Zhou, C.; Zhang, D. H.; Yu, H. J.; Xu, H. T.; Shi, Z.; Zhang, T. R.; Wu, L. Z. et al. Shape-controlled synthesis of polyhedral 50-facet Cu2O microcrystals with high-index facets. Crystengcomm 2012, 14, 4431–4436.

    Article  Google Scholar 

  38. Leng, M.; Liu, M. Z.; Zhang, Y. B.; Wang, Z. Q.; Yu, C.; Yang, X. G.; Zhang, H. J.; Wang, C. Polyhedral 50-facet Cu2O microcrystals partially enclosed by {311} high-index planes: Synthesis and enhanced catalytic CO oxidation activity. J. Am. Chem. Soc. 2010, 132, 17084–17087.

    Article  Google Scholar 

  39. Sun, S. D.; Li, P. J.; Liang, S. H.; Yang, Z. M. Diversified copper sulfide (Cu2-xS) micro-/nanostructures: A comprehensive review on synthesis, modifications and applications. Nanoscale 2017, 32, 11357–11404.

    Article  Google Scholar 

  40. Xiong, L. B.; Yu, H. Q.; Nie, C. J.; Xiao, Y. J.; Zeng, Q. D.; Wang, G. J.; Wang, B. Y.; Lv, H.; Li, Q. G.; Chen, S. S. Size-controlled synthesis of Cu2O nanoparticles: Size effect on antibacterial activity and application as a photocatalyst for highly efficient H2O2 evolution. RSC Adv. 2017, 7, 51822–51830.

    Article  Google Scholar 

  41. Huang, W. C.; Lyu, L. M.; Yang, Y. C.; Huang, M. H. Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity. J. Am. Chem. Soc. 2012, 134, 1261–1267.

    Article  Google Scholar 

  42. Wang, L.; Wu, X. L.; Xu, W. H.; Huang, X. J.; Liu, J. H.; Xu, A. W. Stable organic-inorganic hybrid of polyaniline/α-zirconium phosphate for efficient removal of organic pollutants in water environment. ACS Appl. Mater. Interfaces 2012, 4, 2686–2692.

    Article  Google Scholar 

  43. Huang, J.; Ye, M.; Qu, Y. Q.; Chu, L. F.; Chen, R.; He, Q. Z.; Xu, D. F. Pb(II) removal from aqueous media by EDTA-modified mesoporous silica SBA-15. J. Colloid Interface. Sci. 2012, 385, 137–146.

    Article  Google Scholar 

  44. Jiang, Y. J.; Gao, Q. M.; Yu, H. G.; Chen, Y. R.; Deng, F. Intensively competitive adsorption for heavy metal ions by PAMAM-SBA-15 and EDTA-PAMAM-SBA-15 inorganic-organic hybrid materials. Micropor. Mesopor. Mater. 2007, 103, 316–324.

    Article  Google Scholar 

  45. Li, B. J.; Li, Y. Y.; Zhao, Y. B.; Sun, L. Shape-controlled synthesis of Cu2O nano/microcrystals and their antibacterial activity. J. Phys. Chem. Solids 2013, 74, 1842–1847.

    Article  Google Scholar 

  46. Chang, Y. N.; Zhang, M. Y.; Xia, L.; Zhang, J.; Xing, G. M. The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 2012, 5, 2850–2871.

    Article  Google Scholar 

  47. Applerot, G.; Lellouche, J.; Lipovsky, A.; Nitzan, Y.; Lubart, R.; Gedanken, A.; Banin, E. Understanding the antibacterial mechanism of CuO nano-particles: Revealing the route of induced oxidative stress. Small 2012, 8, 3326–3337.

    Article  Google Scholar 

  48. Cai, X.; Zhang, J. L.; Ouyang, Y.; Ma, D.; Tan, S. Z.; Peng, Y. L. Bacteria-adsorbed palygorskite stabilizes the quaternary phosphonium salt with specific-targeting capability, long-term antibacterial activity, and lower cytotoxicity. Langmuir 2013, 29, 5279–5285.

    Article  Google Scholar 

  49. Cai, X.; Zhang, B.; Liang, Y. Y.; Zhang, J. L.; Yan, Y. H.; Chen, X. Y.; Wu, Z. M.; Liu, H. X.; Wen, S. P.; Tan, S. Z. et al. Study on the antibacterial mechanism of copper ion- and neodymium ion-modified α-zirconium phosphate with better antibacterial activity and lower cytotoxicity. Colloid. Surface. B Biointerfaces 2015, 132, 281–289.

    Article  Google Scholar 

  50. Guo, J. N.; Xu, Q. M.; Zheng, Z. Q.; Zhou, S. B.; Mao, H. L.; Wang, B.; Yan, F. Intrinsically antibacterial poly(ionic liquid) membranes: The synergistic effect of anions. ACS Macro Lett. 2015, 4, 1094–1098.

    Article  Google Scholar 

  51. Hu, W. B.; Peng, C.; Luo, W. J.; Lv, M.; Li, X. M.; Li, D.; Huang, Q.; Fan, C. H. Graphene-based antibacterial paper. ACS Nano 2010, 4, 4317–4323.

    Article  Google Scholar 

  52. Abiraman, T.; Balasubramanian, S. Synthesis and characterization of large-scale (< 2 nm) chitosan-decorated copper nanoparticles and their application in antifouling coating. Ind. Eng. Chem. Res. 2017, 56, 1498–1508.

    Article  Google Scholar 

  53. Bagchi, B.; Kar, S.; Dey, S. K.; Bhandary, S.; Roy, D.; Mukhopadhyay, T. K.; Das, S.; Nandy, P. In situ synthesis and antibacterial activity of copper nanoparticle loaded natural montmorillonite clay based on contact inhibition and ion release. Colloid. Surface. B Biointerfaces 2013, 108, 358–365.

    Article  Google Scholar 

  54. Sahithya, K.; Das, D.; Das, N. Effective removal of dichlorvos from aqueous solution using biopolymer modified MMT-CuO composites: Equilibrium, kinetic and thermodynamic studies. J. Mol. Liq. 2015, 211, 821–830.

    Article  Google Scholar 

  55. De, B.; Gupta, K.; Mandal, M.; Karak, N. Biocide immobilized OMMT-carbon dot reduced Cu2O nanohybrid/hyperbranched epoxy nanocomposites: Mechanical, thermal, antimicrobial and optical properties. Mat. Sci. Eng. C 2015, 56, 74–83.

    Article  Google Scholar 

  56. Padmavathy, N.; Samantaray, P. K.; Das Ghosh, L.; Madras, G.; Bose, S. Selective cleavage of the polyphosphoester in crosslinked copper based nanogels: Enhanced antibacterial performance through controlled release of copper. Nanoscale 2017, 9, 12664–12676.

    Article  Google Scholar 

  57. Chatterjee, A. K.; Chakraborty, R.; Basu, T. Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 2014, 25, 135101.

    Article  Google Scholar 

  58. Gunawan, C.; Teoh, W. Y.; Marquis, C. P.; Amal, R. Cytotoxic origin of copper(II) oxide nanoparticles: Comparative studies with micron-sized particles, leachate, and metal salts. ACS Nano 2011, 5, 7214–7225.

    Article  Google Scholar 

  59. Ouyang, Y.; Cai, X.; Shi, Q. S.; Liu, L. L.; Wan, D L.; Tan, S. Z.; Ouyang, Y. S. Poly-L-lysine-modified reduced graphene oxide stabilizes the copper nanoparticles with higher water-solubility and long-term additively antibacterial activity. Colloid. Surface. B Biointerfaces 2013, 107, 107–114.

    Article  Google Scholar 

  60. Cheng, Y. M.; Lu, J. T.; Liu, S. L.; Zhao, P.; Lu, G. Z.; Chen, J. H. The preparation, characterization and evaluation of regenerated cellulose/collagen composite hydrogel films. Carbohyd. Polym. 2014, 107, 57–64.

    Article  Google Scholar 

  61. Bao, H. Z.; Zhang, Z. H.; Hua, Q.; Huang, W. X. Compositions, structures, and catalytic activities of CeO2@Cu2O nanocomposites prepared by the template-assisted method. Langmuir 2014, 30, 6427–6436.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Key Research and Development Program of China (Nos. 2016YFA0201702 and 2016YFA0201700), the Fundamental Research Funds for the Central Universities (Nos. 2232018A3-01 and 2232018D3-03) and the Innovative Research Team in University of Ministry of Education of China (No. IRT16R13), the International Joint Laboratory for Advanced fiber and Low-dimension Materials (No. 18520750400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meifang Zhu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Xiang, H., Zabihi, F. et al. Intriguing anti-superbug Cu2O@ZrP hybrid nanosheet with enhanced antibacterial performance and weak cytotoxicity. Nano Res. 12, 1453–1460 (2019). https://doi.org/10.1007/s12274-019-2406-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2406-8

Keywords

Navigation