Skip to main content
Log in

Highly sensitive and rapidly responding room-temperature NO2 gas sensors based on WO3 nanorods/sulfonated graphene nanocomposites

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Metal oxide/graphene nanocomposites are emerging as promising materials for developing room-temperature gas sensors. However, the unsatisfactory performances owing to the relatively low sensitivity, slow response, and recovery kinetics limit their applications. Herein, a highly sensitive and rapidly responding room-temperature NO2 gas sensor based on WO3 nanorods/sulfonated reduced graphene oxide (S-rGO) was prepared via a simple and cost-effective hydrothermal method. The optimal sensor response of the WO3/S-rGO sensor toward 20 ppm NO2 is 149% in 6 s, which is 4.7 times higher and 100 times faster than that of the corresponding WO3/rGO sensors. In addition, the sensor exhibits excellent reproducibility, selectivity, and extremely fast recovery kinetics. The mechanism of the WO3/S-rGO nanocomposite gas sensor is investigated in detail. In addition to the high transport capability of S-rGO as well as its excellent NO2 adsorption ability, the superior sensing performance of the S-rGO/WO3 sensor can be attributed to the favorable charge transfer occurring at the S-rGO/WO3 interfaces. We believe that the strategy of compositing a metal oxide with functionalized graphene provides a new insight for the future development of room-temperature gas sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Guarnieri, M.; Balmes, J. R. Outdoor air pollution and asthma. Lancet 2014, 383, 1581–1592.

    Article  Google Scholar 

  2. Ou, J. Z.; Yao, C. K.; Rotbart, A.; Muir, J. G.; Gibson, P. R.; Kalantar-zadeh, K. Human intestinal gas measurement systems: In vitro fermentation and gas capsules. Trends Biotechnol. 2015, 33, 208–213.

    Article  Google Scholar 

  3. Puckett, J. L.; George, S. C. Partitioned exhaled nitric oxide to non-invasively assess asthma. Respir. Physiol. Neurobiol. 2008, 163, 166–177.

    Article  Google Scholar 

  4. Andringa, A. M.; Piliego, C.; Katsouras, I.; Blom, P. W. M.; de Leeuw, D. M. NO2 detection and real-time sensing with field-effect transistors. Chem. Mater. 2014, 26, 773–785.

    Article  Google Scholar 

  5. Miller, D. R.; Akbar, S. A.; Morris, P. A. Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sensor. Actuat. B: Chem. 2014, 204, 250–272.

    Article  Google Scholar 

  6. Xiong, Y.; Chen, W. P.; Li, Y. S.; Cui, P.; Guo, S. S.; Chen, W.; Tang, Z. L.; Yan, Z. J.; Zhang, Z. Y. Contrasting room-temperature hydrogen sensing capabilities of Pt-SnO2 and Pt-TiO2 composite nanoceramics. Nano Res. 2016, 9, 3528–3535.

    Article  Google Scholar 

  7. Zhang, J.; Liu, X. H.; Neri, G.; Pinna, N. Nanostructured materials for room-temperature gas sensors. Adv. Mater. 2016, 28, 795–831.

    Article  Google Scholar 

  8. Zhang, H.; Feng, J. C.; Fei, T.; Liu, S.; Zhang, T. SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature. Sensor. Actuat. B: Chem. 2014, 190, 472–478.

    Article  Google Scholar 

  9. Sonker, R. K.; Sabhajeet, S. R.; Singh, S.; Yadav, B. C. Synthesis of ZnO nanopetals and its application as NO2 gas sensor. Mater. Lett. 2015, 152, 189–191.

    Article  Google Scholar 

  10. Kida, T.; Nishiyama, A.; Hua, Z. Q.; Suematsu, K.; Yuasa, M.; Shimanoe, K. WO3 nanolamella gas sensor: Porosity control using SnO2 nanoparticles for enhanced NO2 sensing. Langmuir 2014, 30, 2571–2579.

    Article  Google Scholar 

  11. Akiyama, M.; Tamak, J.; Miura, N.; Yamazoe, N. Tungsten oxide-based semiconductor sensor highly sensitive to NO and NO2. Chem. Lett. 1991, 20, 1611–1614.

    Article  Google Scholar 

  12. You, Y.; Sun, Y. F.; Ma, J.; Guan, Y.; Sun, J. M.; Du, Y.; Lu, G. Y. Highly sensitive NO2 sensor based on square-like tungsten oxide prepared with hydrothermal treatment. Sensor. Actuat. B: Chem. 2011, 157, 401–407.

    Article  Google Scholar 

  13. Srivastava, S.; Jain, K.; Singh, V. N.; Singh, S.; Vijayan, N.; Dilawar, N.; Gupta, G.; Senguttuvan, T. D. Faster response of NO2 sensing in graphene-WO3 nanocomposites. Nanotechnology 2012, 23, 205501.

    Article  Google Scholar 

  14. An, X. Q.; Yu, J. C.; Wang, Y.; Hu, Y. M.; Yu, X. L.; Zhang, G. J. WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing. J. Mater. Chem. 2012, 22, 8525–8531.

    Article  Google Scholar 

  15. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nature 2007, 6, 183–191.

    Article  Google Scholar 

  16. Katsnelson, M. I. Graphene: Carbon in two dimensions. Mater. Today 2007, 10, 20–27.

    Article  Google Scholar 

  17. Rao, C. N. R.; Biswas, K.; Subrahmanyam, K. S.; Govindaraj, A. Graphene, the new nanocarbon. J. Mater. Chem. 2009, 19, 2457–2469.

    Article  Google Scholar 

  18. Cagliani, A.; Mackenzie, D. M. A.; Tschammer, L. K.; Pizzocchero, F.; Almdal, K.; Bøggild, P. Large-area nanopatterned graphene for ultrasensitive gas sensing. Nano Res. 2014, 7, 743–754.

    Article  Google Scholar 

  19. Tammanoon, N.; Wisitsoraat, A.; Sriprachuabwong, C.; Phokharatkul, D.; Tuantranont, A.; Phanichphant, S.; Liewhiran, C. Ultrasensitive NO2 sensor based on Ohmic metal–semiconductor interfaces of electrolytically exfoliated graphene/flame-spray-made SnO2 nanoparticles composite operating at low temperatures. ACS Appl. Mater. Interfaces 2015, 7, 24338–24352.

    Article  Google Scholar 

  20. Yi, J.; Lee, J. M.; Park, W. I. Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors. Sensor. Actuat. B: Chem. 2011, 155, 264–269.

    Article  Google Scholar 

  21. Choi, S. J.; Fuchs, F.; Demadrille, R.; Grévin, B.; Jang, B. H.; Lee, S. J.; Lee, J. H.; Tuller, H. L.; Kim, I. D. Fast responding exhaled-breath sensors using WO3 hemitubes functionalized by graphene-based electronic sensitizers for diagnosis of diseases. ACS Appl. Mater. Interfaces 2014, 6, 9061–9070.

    Article  Google Scholar 

  22. Yang, W.; Wan, P.; Zhou, X. D.; Hu, J. M.; Guan, Y. F.; Feng, L. Additive-free synthesis of In2O3 cubes embedded into graphene sheets and their enhanced NO2 sensing performance at room temperature. ACS Appl. Mater. Interfaces 2014, 6, 21093–21100.

    Article  Google Scholar 

  23. Deng, S. Z.; Tjoa, V.; Fan, H. M.; Tan, H. R.; Sayle, D. C.; Olivo, M.; Mhaisalkar, S.; Wei, J.; Sow, C. H. Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J. Am. Chem. Soc. 2012, 134, 4905–4917.

    Article  Google Scholar 

  24. Xia, Y.; Wang, J.; Xu, J. L.; Li, X.; Xie, D.; Xiang, L.; Komarneni, S. Confined formation of ultrathin ZnO nanorods/reduced graphene oxide mesoporous nanocomposites for high-performance room-temperature NO2 sensors. ACS Appl. Mater. Interfaces 2016, 8, 35454–35463.

    Article  Google Scholar 

  25. Liu, X.; Cui, J. S.; Sun, J. B.; Zhang, X. T. 3D graphene aerogel-supported SnO2 nanoparticles for efficient detection of NO2. RSC Adv. 2014, 4, 22601–22605.

    Article  Google Scholar 

  26. Liu, S.; Yu, B.; Zhang, H.; Fei, T.; Zhang, T. Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sensor. Actuat. B: Chem. 2014, 202, 272–278.

    Article  Google Scholar 

  27. Jie, X. Q.; Zeng, D. W.; Zhang, J.; Xu, K.; Wu, J. J.; Zhu, B. K.; Xie, C. S. Graphene-wrapped WO3 nanospheres with room-temperature NO2 sensing induced by interface charge transfer. Sensor. Actuat. B: Chem. 2015, 220, 201–209.

    Article  Google Scholar 

  28. Huang, L.; Wang, Z. P.; Zhang, J. K; Pu, J. L.; Lin, Y. J.; Xu, S. H.; Chen, Q.; Shi, W. Z. Fully printed, rapid-response sensors based on chemically modified graphene for detecting NO2 at room temperature. ACS Appl. Mater. Interfaces 2014, 6, 7426–7433.

    Article  Google Scholar 

  29. Yuan, W. J.; Liu, A. R.; Huang, L; Li, C; Shi, G. Q. Highperformance NO2 sensors based on chemically modified graphene. Adv. Mater. 2013, 25, 766–771.

    Article  Google Scholar 

  30. Liu, S.; Wang, Z. Y.; Zhang, Y; Li, J. C; Zhang, T. Sulfonated graphene anchored with tin oxide nanoparticles for detection of nitrogen dioxide at room temperature with enhanced sensing performances. Sensor. Actuat. B: Chem. 2016, 228, 134–143.

    Article  Google Scholar 

  31. Si, Y. C.; Samulski, E. T. Synthesis of water soluble graphene. Nano Lett. 2008, 8, 1679–1682.

    Article  Google Scholar 

  32. Hummers Jr, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

    Article  Google Scholar 

  33. Wang, S.; Ang, P. K.; Wang, Z. Q.; Tang, A. L. L.; Thong, J. T. L.; Loh, K. P. High mobility, printable, and solutionprocessed graphene electronics. Nano Lett. 2010, 10, 92–98.

    Article  Google Scholar 

  34. Dong, B.; Zhong, D. Y.; Chi, L. F.; Fuchs, H. Patterning of conducting polymers based on a random copolymer strategy: Toward the facile fabrication of nanosensors exclusively based on polymers. Adv. Mater. 2005, 17, 2736–2741.

    Article  Google Scholar 

  35. Dong, B.; Lu, N.; Zelsmann M.; Kehagias N.; Fuchs H.; Torres, C. M. S.; Chi, L. F. Fabrication of high-density, large-area conducting-polymer nanostructures. Adv. Funct. Mater. 2006, 16, 1937–1942.

    Article  Google Scholar 

  36. Zhou, W.; Guo, Y. T.; Zhang, H.; Su, Y. J.; Liu, M.; Dong, B. A highly sensitive ammonia sensor based on spinous core-shell PCL-PANI fibers. J. Mater. Sci. 2017, 52, 6554–6566.

    Article  Google Scholar 

  37. Jung, I.; Pelton, M.; Piner, R.; Dikin, D. A.; Stankovich, S.; Watcharotone, S.; Hausner, M.; Ruoff, R. S. Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Lett. 2007, 7, 3569–3575.

    Article  Google Scholar 

  38. Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.

    Article  Google Scholar 

  39. Xu, Y. X.; Bai, H.; Lu, G. W.; Li, C.; Shi, G. Q. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 2008, 130, 5856–5857.

    Article  Google Scholar 

  40. Lu, J. L.; Li, Y. H.; Li, S. L.; Jiang, S. P. Self-assembled platinum nanoparticles on sulfonic acid-grafted graphene as effective electrocatalysts for methanol oxidation in direct methanol fuel cells. Sci. Rep. 2016, 6, 21530.

    Article  Google Scholar 

  41. Jiang, D. D.; Yao, Q.; McKinney, M. A.; Wilkie, C. A. TGA/FTIR studies on the thermal degradation of some polymeric sulfonic and phosphonic acids and their sodium salts. Polym. Degrad. Stabil. 1999, 63, 423–434.

    Article  Google Scholar 

  42. Yin, W. S.; Ruckenstein, E. Soluble polyaniline co-doped with dodecyl benzene sulfonic acid and hydrochloric acid. Synthetic Met. 2000, 108, 39–46.

    Article  Google Scholar 

  43. Gao, J.; Liu, F.; Liu, Y. L.; Ma, N.; Wang, Z. Q.; Zhang, X. Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chem. Mater. 2010, 22, 2213–2218.

    Article  Google Scholar 

  44. Akhavan, O.; Choobtashani, M.; Ghaderi, E. Protein degradation and RNA efflux of viruses photocatalyzed by graphene-tungsten oxide composite under visible light irradiation. J. Phys. Chem. C 2012, 116, 9653–9659.

    Article  Google Scholar 

  45. Guo, J. J.; Li, Y.; Zhu, S. M.; Chen, Z. X.; Liu, Q. L.; Zhang, D.; Song, D. M.; Song, D. M. Synthesis of WO3@graphene composite for enhanced photocatalytic oxygen evolution from water. RSC Adv. 2012, 2, 1356–1363.

    Article  Google Scholar 

  46. Zhu, S. M.; Liu, X. Y.; Chen, Z. X.; Liu, C. J.; Feng, C. L.; Gu, J. J.; Liu, Q. L.; Zhang, D. Synthesis of Cu-doped WO3 materials with photonic structures for high performance sensors, J. Mater. Chem. 2010, 20, 9126–9132.

    Article  Google Scholar 

  47. Manna, A. K.; Pati, S. K. Tuning the electronic structure of graphene by molecular charge transfer: A computational study. Chem. Asian J. 2009, 4, 855–860.

    Article  Google Scholar 

  48. Chen, N.; Li, X. G.; Wang, X. Y.; Yu, J.; Wang, J.; Tang, Z. N.; Akbar, S. A. Enhanced room temperature sensing of Co3O4-intercalated reduced graphene oxide based gas sensors. Sensor. Actuat. B: Chem. 2013, 188, 902–908.

    Article  Google Scholar 

  49. Huang, Q. W.; Zeng, D. W.; Li, H. Y.; Xie, C. S. Room temperature formaldehyde sensors with enhanced performance, fast response and recovery based on zinc oxide quantum dots/graphene nanocomposites. Nanoscale 2012, 4, 5651–5658.

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded by Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology (No. 2017KM007), the open Project of State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (No. HCK201704), and the National Natural Science Foundation of China (NSFC) (No. 21101043).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juanyuan Hao or You Wang.

Electronic supplementary material

12274_2017_1688_MOESM1_ESM.pdf

Highly sensitive and rapidly responding room-temperature NO2 gas sensors based on WO3 nanorods/sulfonated graphene nanocomposites

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Hao, J., Zheng, S. et al. Highly sensitive and rapidly responding room-temperature NO2 gas sensors based on WO3 nanorods/sulfonated graphene nanocomposites. Nano Res. 11, 791–803 (2018). https://doi.org/10.1007/s12274-017-1688-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1688-y

Keywords

Navigation