Skip to main content
Log in

Stable and unique graphitic Raman internal standard nanocapsules for surface-enhanced Raman spectroscopy quantitative analysis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Graphitic nanomaterials have unique, strong, and stable Raman vibrations that have been widely applied in chemistry and biomedicine. However, utilizing them as internal standards (ISs) to improve the accuracy of surface-enhanced Raman spectroscopy (SERS) analysis has not been attempted. Herein, we report the design of a unique IS nanostructure consisting of a large number of gold nanoparticles (AuNPs) decorated on multilayered graphitic magnetic nanocapsules (AGNs) to quantify the analyte and eliminate the problems associated with traditional ISs. The AGNs demonstrated a unique Raman band from the graphitic component, which was localized in the Raman silent region of the biomolecules, making them an ideal IS for quantitative Raman analysis without any background interference. The IS signal from the AGNs also indicated superior stability, even under harsh conditions. With the enhancement of the decorated AuNPs, the AGN nanostructures greatly improved the quantitative accuracy of SERS, in particular the exclusion of quantitative errors resulting from collection loss and non-uniform distribution of the analytes. The AGNs were further utilized for cell staining and Raman imaging, and they showed great promise for applications in biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fu, D.; Zhou, J.; Zhu, W. S.; Manley, P. W.; Wang, Y. K.; Hood, T.; Wylie, A.; Xie, X. S. Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering. Nat. Chem. 2014, 6, 614–622.

    Article  Google Scholar 

  2. Okada, M.; Smith, N. I.; Palonpon, A. F.; Endo, H.; Kawata, S.; Sodeoka, M.; Fujita, K. Label-free Raman observation of cytochrome c dynamics during apoptosis. Proc. Natl. Acad. Sci. USA 2012, 109, 28–32.

    Article  Google Scholar 

  3. Qian, X. M.; Peng, X. H.; Ansari, D. O.; Yin-Goen, Q.; Chen, G. Z.; Shin, D. M.; Yang, L.; Young, A. N.; Wang, M. D.; Nie, S. M. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 2008, 26, 83–90.

    Article  Google Scholar 

  4. Abramczyk, H.; Brozek-Pluska, B. Raman imaging in biochemical and biomedical applications. Diagnosis and treatment of breast cancer. Chem. Rev. 2013, 113, 5766–5781.

    Article  Google Scholar 

  5. Kneipp, K.; Kneipp, H.; Kneipp, J. Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregatesfrom single-molecule Raman spectroscopy to ultrasensitive probing in live cells. Acc. Chem. Res. 2006, 39, 443–450.

    Article  Google Scholar 

  6. Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464, 392–395.

    Article  Google Scholar 

  7. Bell, S. E. J.; Mackle, J. N.; Sirimuthu, N. M. S. Quantitative surface-enhanced Raman spectroscopy of dipicolinic acidtowards rapid anthrax endospore detection. Analyst 2005, 130, 545–549.

    Article  Google Scholar 

  8. Deb, S. K.; Davis, B.; Knudsen, G. M.; Gudihal, R.; Ben- Amotz, D.; Davisson, V. J. Detection and relative quantification of proteins by surface enhanced Raman using isotopic labels. . J. Am. Chem. Soc. 2008, 130, 9624–9625.

    Article  Google Scholar 

  9. Shen, W.; Lin, X.; Jiang, C. Y.; Li, C. Y.; Lin, H. X.; Huang, J. T.; Wang, S.; Liu, G. K.; Yan, X. M.; Zhong, Q. L. et al. Reliable quantitative SERS analysis facilitated by core–shell nanoparticles with embedded internal standards. Angew. Chem., Int. Ed. 2015, 54, 7308–7312.

    Article  Google Scholar 

  10. Chen, Z.; Tabakman, S. M.; Goodwin, A. P.; Kattah, M. G.; Daranciang, D.; Wang, X. R.; Zhang, G. Y.; Li, X. L.; Liu, Z.; Utz, P. J. et al. Protein microarrays with carbon nanotubes as multicolor Raman labels. Nat. Biotechnol. 2008, 26, 1285–1292.

    Article  Google Scholar 

  11. Liu, Z.; Tabakman, S.; Sherlock, S.; Li, X. L.; Chen, Z.; Jiang, K. L.; Fan, S. S.; Dai, H. J. Multiplexed five-color molecular imaging of cancer cells and tumor tissues with carbon nanotube Raman tags in the near-infrared. Nano Res. 2010, 3, 222–233.

    Article  Google Scholar 

  12. Xu, W. G.; Ling, X.; Xiao, J. Q.; Dresselhaus, M. S.; Kong, J.; Xu, H. X.; Liu, Z. F.; Zhang, J. Surface enhanced Raman spectroscopy on a flat graphene surface. Proc. Natl. Acad. Sci. USA 2012, 109, 9281–9286.

    Article  Google Scholar 

  13. Zheng, J.; Bai, J. H.; Zhou, Q. F.; Li, J. S.; Li, Y. H.; Yang, J. F.; Yang, R. H. DNA-templated in situ growth of AgNPs on SWNTs: A new approach for highly sensitive SERS assay of microRNA. Chem. Commun. 2015, 51, 6552–6555.

    Article  Google Scholar 

  14. Lin, L.; Tian, X. D.; Hong, S. L.; Dai, P.; You, Q. C.; Wang, R. Y.; Feng, L. S.; Xie, C.; Tian, Z. Q.; Chen, X. Innentitelbild: A bioorthogonal Raman reporter strategy for SERS detection of glycans on live cells. Angew. Chem. 2013, 125, 7184.

    Article  Google Scholar 

  15. Zheng, Y. Q.; Zhong, X. L.; Li, Z. Y.; Xia, Y. N. Successive, seed-mediated growth for the synthesis of single-crystal gold nanospheres with uniform diameters controlled in the range of 5-150 nm. Part. Part. Syst. Char. 2014, 31, 266–273.

    Article  Google Scholar 

  16. Software for simulation: FDTD Solutions 8.0; Lumerical Solutions, Inc., 2015.

  17. Chen, Y.; Chen, Z.-P.; Jin, J.-W.; Yu, R.-Q. Quantitative determination of ametryn in river water using surfaceenhanced Raman spectroscopy coupled with an advanced chemometric model. Chemom. Intell. Lab. Syst. 2015, 142, 166–171.

    Article  Google Scholar 

  18. Cabalín, L. M.; Laserna, J. J. Fast spatially resolved surfaceenhanced Raman spectrometry on a silver coated filter paper using charge-coupled device detection. Anal. Chim. Acta 1995, 310, 337–345.

    Article  Google Scholar 

  19. Lee, A. S. L.; Li, Y.-S. Surface-enhanced Raman spectra using silver-coated paper substrates. J. Raman Spectrosc. 1994, 25, 209–214.

    Article  Google Scholar 

  20. Tseng, S. C.; Yu, C. C.; Wan, D. H.; Chen, H. L.; Wang, L. A.; Wu, M. C.; Su, W. F.; Han, H. C.; Chen, L. C. Eco-friendly plasmonic sensors: Using the photothermal effect to prepare metal nanoparticle-containing test papers for highly sensitive colorimetric detection. Anal. Chem. 2012, 84, 5140–5145.

    Article  Google Scholar 

  21. Wang, J. P.; Yang, L.; Liu, B. H.; Jiang, H. H.; Liu, R. Y.; Yang, J. W.; Han, G. M.; Mei, Q. S.; Zhang, Z. P. Inkjetprinted silver nanoparticle paper detects airborne species from crystalline explosives and their ultratrace residues in open environment. Anal. Chem. 2014, 86, 3338–3345.

    Article  Google Scholar 

  22. Yunker, P. J.; Still, T.; Lohr, M. A.; Yodh, A. G. Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 2011, 476, 308–311.

    Article  Google Scholar 

  23. Lasch, P. Spectral pre-processing for biomedical vibrational spectroscopy and microspectroscopic imaging. Chemom. Intell. Lab. Syst. 2012, 117, 100–114.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhuo Chen or Weihong Tan.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Y., Chen, L., Song, Z. et al. Stable and unique graphitic Raman internal standard nanocapsules for surface-enhanced Raman spectroscopy quantitative analysis. Nano Res. 9, 1418–1425 (2016). https://doi.org/10.1007/s12274-016-1037-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1037-6

Keywords

Navigation