Skip to main content
Log in

Three-dimensional porous V2O5 hierarchical octahedrons with adjustable pore architectures for long-life lithium batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) porous V2O5 octahedrons have been successfully fabricated via a solid-state conversion process of freshly prepared ammonium vanadium oxide (AVO) octahedrons. The formation of AVO octahedrons is a result of the selective adsorption of capping reagents and the favourable supersaturation of growth species. Subsequently, 3D porous V2O5 octahedrons were obtained by simple thermolysis of the AVO octahedrons via a calcination treatment. As cathode material for lithium batteries, the porous V2O5 octahedron cathode exhibits a capacity of 96 mA·g−1 at high rate up to 2 A·g−1 in the rang of 2.4–4 V and excellent cyclability with little capacity loss after 500 cycles, which can be ascribed to its high specific surface area and tunable pore architecture. Importantly, this facile solid-state thermal conversion strategy can be easily extended to controllably fabricate other porous metal oxide micro/nano materials with specific surface textures and morphologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kang, B.; Ceder, G. Battery materials for ultrafast charging and discharging. Nature 2009, 458, 190–193.

    Article  Google Scholar 

  2. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    Article  Google Scholar 

  3. Zu, C. X.; Li, H. Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci. 2011, 4, 2614–2624.

    Article  Google Scholar 

  4. Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novák, P. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 1998, 10, 725–763.

    Article  Google Scholar 

  5. Liu, G. Q.; Wen, L.; Liu, Y. M. Spinel LiNi0.5Mn1.5O4 and its derivatives as cathodes for high-voltage Li-ion batteries. J. Solid State Electrochem. 2010, 14, 2191–2202.

    Article  Google Scholar 

  6. Zhang, C. Z.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y. L. Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv. Mater. 2013, 25, 4932–4937.

    Article  Google Scholar 

  7. Yang, S. B.; Cui, G. L.; Pang, S. P.; Cao, Q.; Kolb, U.; Feng, X. L.; Maier, J.; Müllen, K. Fabrication of cobalt and cobalt oxide/graphene composites: Towards high-performance anode materials for lithium ion batteries. ChemSusChem 2010, 3, 236–239.

    Article  Google Scholar 

  8. Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271–4302.

    Article  Google Scholar 

  9. Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.

    Article  Google Scholar 

  10. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  Google Scholar 

  11. Wu, H.; Chan, G.; Choi, J. W.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L. B.; Cui, Y. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 2012, 7, 310–315.

    Article  Google Scholar 

  12. Jiang, J.; Feng, Y.; Mahmood, N.; Liu, F.; Hou, Y. L. SnS2/graphene composites: Excellent anode materials for lithium ion battery and photolysis catalysts. Sci. Adv. Mater. 2013, 5, 1667–1675.

    Article  Google Scholar 

  13. Wang, Y. G.; Li, H. Q.; Xia, Y. Y. Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv. Mater. 2006, 18, 2619–2623.

    Article  Google Scholar 

  14. Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L. B.; Nix, W. D.; Cui, Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011, 11, 2949–2954.

    Article  Google Scholar 

  15. Li, L.; Fang, X. S.; Chew, H. G.; Zheng, F.; Liew, T. H.; Xu, X. J.; Zhang, Y. X.; Pan, S. S.; Li, G. H.; Zhang, L. Crystallinity-controlled germanium nanowire arrays: Potential field emitters. Adv. Funct. Mater. 2008, 18, 1080–1088.

    Article  Google Scholar 

  16. Hassoun, J.; Derrien, G.; Panero, S.; Scrosati, B. A nano-structured Sn-C composite lithium battery electrode with unique stability and high electrochemical performance. Adv. Mater. 2008, 20, 3169–3175.

    Article  Google Scholar 

  17. Sun, Y. M.; Hu, X. L.; Luo, W.; Xia, F. F.; Huang, Y. H. Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv. Funct. Mater. 2013, 23, 2436–2444.

    Article  Google Scholar 

  18. Cao, Y. L.; Li, X. L.; Aksay, I. A.; Lemmon, J.; Nie, Z. M.; Yang, Z. G.; Liu, J. Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. Phys. Chem. Chem. Phys. 2011, 13, 7660–7665.

    Article  Google Scholar 

  19. Fergus, J. W. Recent developments in cathode materials for lithium ion batteries. J. Power Sources 2010, 195, 939–954.

    Article  Google Scholar 

  20. Chen, J.; Xu, L. N.; Li, W. Y.; Gou, X. L. α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv. Mater. 2005, 17, 582–586.

    Article  Google Scholar 

  21. Mahmood, N.; Zhang, C. Z.; Jiang, J.; Liu, F.; Hou, Y. L. Multifunctional Co3S4/graphene composites for lithium ion batteries and oxygen reduction reaction. Chem. Eur. J. 2013, 19, 5183–5190.

    Article  Google Scholar 

  22. Wang, S. Q.; Li, S. R.; Sun, Y.; Feng, X. Y.; Chen, C. H. Three-dimensional porous V2O5 cathode with ultra high rate capability. Energy Environ. Sci. 2011, 4, 2854–2857.

    Article  Google Scholar 

  23. Qu, Q. T.; Zhu, Y.; Gao, X.; Wu, Y. S. Core-shell structure of polypyrrole grown on V2O5 nanoribbon as high performance anode material for supercapacitors. Adv. Energy Mater. 2012, 2, 950–955.

    Article  Google Scholar 

  24. Xie, J.; Yang, X. G.; Zhou, S.; Wang, D. W. Comparing one- and two-dimensional heteronano-structures as silicon-based lithium ion battery anode materials. ACS nano 2011, 5, 9225–9231.

    Article  Google Scholar 

  25. Wang, Y.; Cao, G. Z. Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv. Mater. 2008, 20, 2251–2269.

    Article  Google Scholar 

  26. Zhai, T. Y.; Ye, M. F.; Li, L.; Fang, X. S.; Liao, M. Y.; Li, Y. F.; Koide, Y.; Bando, Y.; Golberg, D. Single-crystalline Sb2Se3 nanowires for high-performance field emitters and photodetectors. Adv. Mater. 2010, 22, 4530–4533.

    Article  Google Scholar 

  27. Ban, C. M.; Chernova, N. A.; Whittingham, M. S. Electrospun nano-vanadium pentoxide cathode. Electrochem. Commun. 2009, 11, 522–525.

    Article  Google Scholar 

  28. Muster, J.; Kim, G. T.; Krstić, V.; Park, J. G.; Park, Y. W.; Roth, S.; Burghard, M. Electrical transport through individual vanadium pentoxide nanowires. Adv. Mater. 2000, 12, 420–424.

    Article  Google Scholar 

  29. Watanabe, T.; Ikeda, Y.; Ono, T.; Hibino, M.; Hosoda, M.; Sakai, K.; Kudo, T. Characterization of vanadium oxide sol as a starting material for high rate intercalation cathodes. Solid State Ionics 2002, 151, 313–320.

    Article  Google Scholar 

  30. Liu, Y. Y.; Clark, M.; Zhang, Q. F.; Yu, D. M.; Liu, D.; Liu, J. W.; Cao, G. Z. V2O5 nano-electrodes with high power and energy densities for thin film Li-ion batteries. Adv. Energy Mater. 2011, 1, 194–202.

    Article  Google Scholar 

  31. Raju, V.; Rains, J.; Gates, C.; Luo, W.; Wang, X. F.; Stickle, W. F.; Stucky, G. D.; Ji, X. L. Superior cathode of sodium-ion batteries: Orthorhombic V2O5 nanoparticles generated in nanoporous carbon by ambient hydrolysis deposition. Nano Lett. 2014, 14, 4119–4124.

    Article  Google Scholar 

  32. Varadaraajan, V.; Satishkumar, B. C.; Nanda, J.; Mohanty, P. Direct synthesis of nanostructured V2O5 films using solution plasma spray approach for lithium battery applications. J. Power Sources 2011, 196, 10704–10711.

    Article  Google Scholar 

  33. Ng, S. H.; Patey, T. J.; Büchel, R.; Krumeich, F.; Wang, J. Z.; Liu, H. K.; Pratsinis, S. E.; Novák, P. Flame spray-pyrolyzed vanadium oxide nanoparticles for lithium battery cathodes. Phys. Chem. Chem. Phys. 2009, 11, 3748–3755.

    Article  Google Scholar 

  34. Mai, L. Q.; Dong, F.; Xu, X.; Luo, Y. Z.; An, Q. Y.; Zhao, Y. L.; Pan, J.; Yang, J. N. Cucumber-like V2O5/poly(3,4-ethylenedioxythiophene)&MnO2 nanowires with enhanced electrochemical cyclability. Nano Lett. 2013, 13, 740–745.

    Article  Google Scholar 

  35. Liu, H. M.; Yang, W. S. Ultralong single crystalline V2O5 nanowire/graphene composite fabricated by a facile green approach and its lithium storage behavior. Energy Environ. Sci. 2011, 4, 4000–4008.

    Article  Google Scholar 

  36. Wang, Y.; Takahashi, K.; Shang, H. M.; Cao, G. Z. Synthesis and electrochemical properties of vanadium pentoxide nanotube arrays. J. Phys. Chem. B 2005, 109, 3085–3088.

    Article  Google Scholar 

  37. Wang, H. Y.; Huang, K. L.; Huang, C. H.; Liu, S. Q.; Ren, Y.; Huang, X. B. (NH4)0.5V2O5 nanobelt with good cycling stability as cathode material for Li-ion battery. J. Power Sources 2011, 196, 5645–5650.

    Article  Google Scholar 

  38. Rui, X. H.; Lu, Z. Y.; Yu, H.; Yang, D.; Hng, H. H.; Lim, T. M.; Yan, Q. Y. Ultrathin V2O5 nanosheet cathodes: Realizing ultrafast reversible lithium storage. Nanoscale 2013, 5, 556–560.

    Article  Google Scholar 

  39. Mai, L. Q.; Xu, L.; Han, C. H.; Xu, X.; Luo, Y. Z.; Zhao, S. Y.; Zhao, Y. L. Electrospun ultra-long hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. Nano Lett. 2010, 10, 4750–4755.

    Article  Google Scholar 

  40. Yu, D. M.; Chen, C. G.; Xie, S. H.; Liu, Y. Y.; Park, K.; Zhou, X. Y.; Zhang, Q. F.; Li, J. Y.; Cao, G. Z. Mesoporous vanadium pentoxide nanofibers with significantly enhanced Li-ion storage properties by electro-spinning. Energy Environ. Sci. 2011, 4, 858–861.

    Article  Google Scholar 

  41. Yan, J.; Sumboja, A.; Khoo, E.; Lee, P. S. V2O5 loaded on SnO2 nanowires for high-rate Li ion batteries. Adv. Mater. 2011, 23, 746–750.

    Article  Google Scholar 

  42. Cao, A. M.; Hu, J. S.; Liang, H. P.; Wan, L. J. Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. Angew. Chem. Int. Edit. 2005, 44, 4391–4395.

    Article  Google Scholar 

  43. Sasidharan, M.; Gunawardhana, N.; Yoshio, M.; Nakashima, K. V2O5 hollow nanospheres: A lithium intercalation host with good rate capability and capacity retention. J. Electrochem. Soc. 2012, 159, A618–A621.

    Article  Google Scholar 

  44. Wang, S. Q.; Lu, Z. D.; Wang, D.; Li, C. G.; Chen, C. H.; Yin, Y. D. Porous monodisperse V2O5 microspheres as cathode materials for lithium-ion batteries. J. Mater. Chem. 2011, 21, 6365–6369.

    Article  Google Scholar 

  45. Feng, C. Q.; Wang, S. Y.; Zeng, R.; Guo, Z. P.; Konstantinov, K.; Liu, H. K. Synthesis of spherical porous vanadium pentoxide and its electrochemical properties. J. Power Sources 2008, 184, 485–488.

    Article  Google Scholar 

  46. Liu, Y. Y.; Li, J. G.; Zhang, Q.; Zhou, N.; Uchaker, E. F.; Cao, G. Z. Porous nanostructured V2O5 film electrode with excellent Li-ion intercalation properties. Electrochem. Commun. 2011, 13, 1276–1279.

    Article  Google Scholar 

  47. An, Q. Y.; Wei, Q. L.; Mai, L. Q.; Fei, J. Y.; Xu, X.; Zhao, Y. L.; Yan, M. Y.; Zhang, P. F.; Huang, S. Z. Supercritically exfoliated ultrathin vanadium pentoxide nanosheets with high rate capability for lithium batteries. Phy. Chem. Chem. Phys. 2013, 15, 16828–16833.

    Article  Google Scholar 

  48. Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187–192.

    Article  Google Scholar 

  49. Xiang, H. F.; Wang, H.; Chen, C. H.; Ge, X. W.; Guo, S.; Sun, J. H.; Hu, W. Q. Thermal stability of LiPF6-based electrolyte and effect of contact with various delithiated cathodes of Li-ion batteries. J. Power Sources 2009, 191, 575–581.

    Article  Google Scholar 

  50. Sun, Y. K.; Oh, S. M.; Park, H. K.; Scrosati, B. Micrometer-sized, nanoporous, high-volumetric-capacity LiMn0.85Fe0.15PO4 cathode material for rechargeable lithium-ion batteries. Adv. Mater. 2011, 23, 5050–5054.

    Article  Google Scholar 

  51. Sun, C. W.; Rajasekhara, S.; Goodenough, J. B.; Zhou, F. Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode. J. Am. Chem. Soc. 2011, 133, 2132–2135.

    Article  Google Scholar 

  52. Ren, M. M.; Zhou, Z.; Gao, X. P.; Peng, W. X.; Wei, J. P. Core-shell Li3V2(PO4)3@C composites as cathode materials for lithium-ion batteries. J. Phys. Chem. C 2008, 112, 5689–5693.

    Article  Google Scholar 

  53. Liu, J.; Zhou, Y. C.; Wang, J. B.; Pan, Y.; Xue, D. F. Template-free solvothermal synthesis of yolk-shell V2O5 microspheres as cathode materials for Li-ion batteries. Chem. Commun. 2011, 47, 10380–10382.

    Article  Google Scholar 

  54. Xie, H. M.; Wang, R. S.; Ying, J. R.; Zhang, L. Y.; Jalbout, A. F.; Yu, H. Y.; Yang, G. L.; Pan, X. M.; Su, Z. M. Optimized LiFePO4-polyacene cathode material for lithium-ion batteries. Adv. Mater. 2006, 18, 2609–2613.

    Article  Google Scholar 

  55. Pan, A. Q.; Wu, H. B.; Yu, L.; Zhu, T.; Lou, X. W. Synthesis of hierarchical three-dimensional vanadium oxide microstructures as high-capacity cathode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 2012, 4, 3874–3879.

    Article  Google Scholar 

  56. Kim, H.; Han, B.; Choo, J.; Cho, J. Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem. Int. Ed. 2008, 47, 10151–10154.

    Article  Google Scholar 

  57. Zhang, C. F.; Chen, Z. X.; Guo, Z. P.; Lou, X. W. D. Additive-free synthesis of 3D porous V2O5 hierarchical microspheres with enhanced lithium storage properties. Energy Environ. Sci. 2013, 6, 974–978.

    Article  Google Scholar 

  58. Kang, L. T.; Fu, H. B.; Cao, X. Q.; Shi, Q.; Yao, J. N. Controlled morphogenesis of organic polyhedral nanocrystals from cubes, cubooctahedrons, to octahedrons by manipulating the growth kinetics. J. Am. Chem. Soc. 2011, 133, 1895–1901.

    Article  Google Scholar 

  59. Zhang, X. F.; Wang, K. X.; Wei, X.; Chen, J. S. Carbon-coated V2O5 nanocrystals as high performance cathode material for lithium ion batteries. Chem. Mater. 2011, 23, 5290–5292.

    Article  Google Scholar 

  60. Yu, H. D.; Wang, D. S.; Han, M. Y. Top-down solid-phase fabrication of nanoporous cadmium oxide architectures. J. Am. Chem. Soc. 2007, 129, 2333–2337.

    Article  Google Scholar 

  61. An, Q. Y.; Zhang, P. F.; Wei, Q. L.; He, L.; Xiong, F. Y.; Sheng, J. Z.; Wang, Q. Q.; Mai, L. Q. Top-down fabrication of three-dimensional porous V2O5 hierarchical microplates with tunable porosity for improved lithium battery performance. J. Mater. Chem. A 2014, 2, 3297–3302.

    Article  Google Scholar 

  62. Choi, B. G.; Chang, S. J.; Lee, Y. B.; Bae, J. S.; Kim, H. J.; Huh, Y. S. 3D heterostructured architectures of Co3O4 nanoparticles deposited on porous graphene surfaces for high performance of lithium ion batteries. Nanoscale 2012, 4, 5924–5930.

    Article  Google Scholar 

  63. Mahmood, N.; Zhang, C. Z.; Hou, Y. L. Nickel sulfi de/nitrogen-doped graphene composites: Phase-controlled synthesis and high performance anode materials for lithium ion batteries. Small 2013, 9, 1321–1328.

    Article  Google Scholar 

  64. Meng, F. L.; Fang, Z. G.; Li, Z. X.; Xu, W. W.; Wang, M. J.; Liu, Y. P.; Zhang, J.; Wang, W. R.; Zhao, D. Y.; Guo, X. H. Porous Co3O4 materials prepared by solid-state thermolysis of a novel Co-MOF crystal and their superior energy storage performances for supercapacitors. J. Mater. Chem. A 2013, 1, 7235–7241.

    Article  Google Scholar 

  65. Mahmood, N.; Zhang, C. Z.; Liu, F.; Zhu, J. H.; Hou, Y. L. Hybrid of Co3Sn2@Co nanoparticles and nitrogen-doped graphene as a lithium ion battery anode. ACS nano 2013, 7, 10307–10318.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqiang Mai.

Additional information

These authors contributed equally to this work. All authors discussed the results and commented on the manuscript. The authors declare no competing financial interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, Q., Zhang, P., Xiong, F. et al. Three-dimensional porous V2O5 hierarchical octahedrons with adjustable pore architectures for long-life lithium batteries. Nano Res. 8, 481–490 (2015). https://doi.org/10.1007/s12274-014-0638-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0638-1

Keywords

Navigation