Skip to main content
Log in

Multicolor luminescent carbon nanoparticles: Synthesis, supramolecular assembly with porphyrin, intrinsic peroxidase-like catalytic activity and applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Luminescent carbon nanoparticles (CNPs) are newcomers to the world of nanomaterials and have shown great impact in health and environmental applications as well as being promising building blocks for future nanodevices because of their fascinating photoluminescence and potential to serve as nontoxic replacements for traditional heavy-metals-based quantum dots. Herein, fluorescent CNPs have been prepared from candle soot by refluxing with HNO3 and subsequently separated by a single centrifugation. The CNPs can be represented by the empirical formula C1H0.677O0.586N0.015Na0.069, and have a size of 20–100 nm, height of 3.0 nm, lifetime of 7.31 ns ± 0.06 ns and quantum yield of ∼1.7%. Further studies demonstrate that: (1) the as-prepared CNPs exhibit excellent stability in biological media and their luminescence intensity does not change with ionic strength or pH in the physiological and pathological range of pH 4.5–8.8; (2) CNPs can act as electron donors and transporters and porphyrin can assemble onto CNPs through electrostatic and π-stacking interactions to form porphyrin-CNPs supramolecular composites; (3) CNPs have strong intrinsic peroxidase-like activity. Based on this intrinsic peroxidase activity, a simple, cheap, and highly selective and sensitive colorimetric and quantitative assay has been developed for the detection of glucose levels. This assay has been used to analyze real samples, such as diluted blood and fruit juice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, S. T.; Cao, L.; Luo, P. G.; Lu, F.; Wang, X.; Wang, H. F.; Meziani, M. J.; Liu, Y. F.; Qi, G.; Sun, Y. P. Carbon dots for optical imaging in vivo. J. Am. Chem. Soc. 2009, 131, 11308–11309.

    Article  CAS  Google Scholar 

  2. Cao, L.; Wang, X.; Meziani, M. J.; Lu, F.; Wang, H.; Luo, P. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D., et al. Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 2007, 129, 11318–11319.

    Article  CAS  Google Scholar 

  3. Wang, X.; Cao, L.; Lu, F. S.; Meziani, M. J.; Li, H.; Qi, G.; Zhou, B.; Harruff, B. A.; Kermarrec, F.; Sun, Y. P. Photoinduced electron transfers with carbon dots. Chem. Commun. 2009, 3774–3776.

  4. Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. Int. Ed. 2010, 49, 6726–6744.

    Article  CAS  Google Scholar 

  5. Yu, S. J.; Kang, M. W.; Chang, H. C.; Chen, K. M.; Yu, Y. C. Bright fluorescent nanodiamonds, no photobleaching and low cytotoxicity. J. Am. Chem. Soc. 2005, 127, 17604–17605.

    Article  CAS  Google Scholar 

  6. Fu, C. C.; Lee, H. Y.; Chen, K.; Lim, T. S.; Wu, H. Y.; Lin, P. K.; Wei, P. K.; Tsao, P. H.; Chang, H. C.; Fann, W. S. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl. Acad. Sci. USA 2007, 104, 727–732.

    Article  CAS  Google Scholar 

  7. Ray, S. C.; Saha, A.; Jana, N. R.; Sarkar, R. Fluorescent carbon nanoparticles: Synthesis; characterization; and bioimaging application. J. Phys. Chem. C 2009, 113, 18546–18551.

    Article  CAS  Google Scholar 

  8. Zhou, J.; Booker, C.; Li, R.; Zhou, X.; Sham, T. K.; Sun, X. L.; Ding, Z. F. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J. Am. Chem. Soc. 2007, 129, 744–745.

    Article  CAS  Google Scholar 

  9. Zhao, Q. L.; Zhang, Z. L.; Huang, B. H.; Peng, J.; Zhang, M.; Pang, D. W. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem. Commun. 2008, 5116–5118.

  10. Sun, Y. P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H. F. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757.

    Article  CAS  Google Scholar 

  11. Liu, R.; Wu, D.; Liu, S.; Koynov, K.; Knoll, W.; Li, Q. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew. Chem. Int. Ed. 2009, 48, 4598–4601.

    Article  Google Scholar 

  12. Zhu, H.; Wang, X.; Li, Y.; Wang, Z.; Yang, F.; Yang, X. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem. Commun. 2009, 5118–5120.

  13. Peng, H.; Travas-Sejdic, J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem. Mater. 2009, 21, 5563–5565.

    Article  CAS  Google Scholar 

  14. Hu, S. L.; Niu, K. Y.; Sun, J.; Yang, J.; Zhao, N. Q.; Du, X. W. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J. Mater. Chem. 2009, 19, 484–488.

    Article  CAS  Google Scholar 

  15. Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Georgakilas, V.; Giannelis, E. P. Photoluminescent carbogenic dots. Chem. Mater. 2008, 20, 4539–4541.

    Article  CAS  Google Scholar 

  16. Liu, H. P.; Ye, T.; Mao, C. D. Fluorescent carbon nano-particles derived from candle soot. Angew. Chem. Int. Ed. 2007, 46, 6473–6475.

    Article  CAS  Google Scholar 

  17. Xu, X.; Ray, R.; Gu, Y.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737.

    Article  CAS  Google Scholar 

  18. Mochalin, V. N.; Gogotsi, Y. Wet chemistry route to hydrophobic blue fluorescent nanodiamond. J. Am. Chem. Soc. 2009, 131, 4594–4595.

    Article  CAS  Google Scholar 

  19. Bottini, M.; Balasubramanian, C.; Dawson, M. I.; Bergamaschi, A.; Bellucci, S.; Mustelin, T. Isolation and characterization of fluorescent nanoparticles from pristine and oxidized electric arc-produced single-walled carbon nanotubes. J. Phys. Chem. B 2006, 110, 831–836.

    Article  CAS  Google Scholar 

  20. Rahman, G. M. A.; Guldi, D. M.; Campidelli, S.; Prato, M. Electronically interacting single wall carbon nanotube-porphyrin nanohybrids. J. Mater. Chem. 2006, 16, 62–65.

    Article  CAS  Google Scholar 

  21. Hasobe, T.; Fukuzumi, S.; Kamat, P. V. Ordered assembly of protonated porphyrin driven by single-wall carbon nano-tubes. J- and H-aggregates to nanorods. J. Am. Chem. Soc. 2005, 127, 11884–11885.

    Article  CAS  Google Scholar 

  22. D’souza, F.; Chitta, R.; Sandanayaka, A. S. D.; Subbaiyan, N. K.; D’souza, L.; Araki, Y.; Ito, O. Self-assembled single-walled carbon nanotube: Zinc-porphyrin hybrids through ammonium ion-crown ether interaction, construction and electron transfer. Chem. Eur. J. 2007, 13, 8277–8284.

    Article  Google Scholar 

  23. Guldi, D. M.; Rahman, G. M. A.; Jux, N.; Balbinot, D.; Hartnagel, U.; Tagmatarchis, N.; Prato, M. Functional single-wall carbon nanotube nanohybrids associating SWNTs with water-soluble enzyme model systems. J. Am. Chem. Soc. 2005, 127, 9830–9838.

    Article  CAS  Google Scholar 

  24. Li, H.; He, X.; Kang, Z.; Huang, H.; Liu, Y.; Liu, J.; Lian, S.; Tsang, C. H. A.; Yang, X.; Lee, S. -T. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int. Ed. 2010, 49, 4430–4434.

    Article  CAS  Google Scholar 

  25. Lakowicz, J. R. Principles of Fluorescence Spectroscopy; Kluwer Academic/Plenum Publishers: New York, 1999.

    Google Scholar 

  26. Xu, Y. X.; Zhao, L.; Bai, H.; Hong, W. J.; Li, C.; Shi, G. Q. Chemically converted graphene induced molecular flattening of 5;10;15;20-tetrakis(1-methyl-4-pyridinio) porphyrin and its application for optical detection of cadmium(II) ions. J. Am. Chem. Soc. 2009, 131, 13490–13497.

    Article  CAS  Google Scholar 

  27. Song, Y. J.; Qu, K. G.; Zhao, C.; Ren, J. S.; Qu, X. G. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 2010, 22, 2206–2210.

    Article  CAS  Google Scholar 

  28. Song, Y. J.; Wang, X. H.; Ren, J. S.; Qu, X. G. Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chem. Eur. J. 2010, 16, 3617–3621.

    Article  CAS  Google Scholar 

  29. Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S., et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

    Article  CAS  Google Scholar 

  30. Peng, Y. H.; Li, X.; Ren, J. S.; Qu, X. G. Single-walled carbon nanotubes binding to human telomeric i-motif DNA, significant acceleration of S1 nuclease cleavage rate. Chem. Commun. 2007, 5176–5178.

  31. Kim, J. H.; Heller, D. A.; Jin, H.; Barone, P. W.; Song, C.; Zhang, J.; Trudel, L. J.; Wogan, G. N.; Tannenbaum, S. R.; Strano, M. S. The rational design of nitric oxide selectivity in single-walled carbon nanotube near-infrared fluorescence sensors for biological detection. Nat. Chem. 2009, 1, 473–481.

    Article  CAS  Google Scholar 

  32. Tang, Y.; Allen, B. L.; Kauffman, D. R.; Star, A. Electrocatalytic activity of nitrogen-doped carbon nanotube cups. J. Am. Chem. Soc. 2009, 131, 13200–13201.

    Article  CAS  Google Scholar 

  33. Tsai, Y. C.; Li, S. C.; Chen, J. M. Cast thin film biosensor design based on a Nafion backbone, a multiwalled carbon nanotube conduit, and a glucose oxidase function. Langmuir 2005, 21, 3653–3658.

    Article  CAS  Google Scholar 

  34. Hrapovic, S.; Liu, Y.; Male, K. B.; Luong, J. H. T. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal. Chem. 2003, 76, 1083–1088.

    Article  Google Scholar 

  35. Lu, J.; Drzal, L. T.; Worden, R. M.; Lee, I. Simple fabrication of a highly sensitive glucose biosensor using enzymes immobilized in exfoliated graphite nanoplatelets nafion membrane. Chem. Mater. 2007, 19, 6240–6246.

    Article  CAS  Google Scholar 

  36. Wu, B. Y.; Hou, S. H.; Yin, F.; Zhao, Z. X.; Wang, Y. Y.; Wang, X. S.; Chen, Q. Amperometric glucose biosensor based on multilayer films via layer-by-layer self-assembly of multi-wall carbon nanotubes, gold nanoparticles and glucose oxidase on the Pt electrode. Biosens. Bioelectron. 2007, 22, 2854–2860.

    Article  CAS  Google Scholar 

  37. Zhu, L.; Yang, R.; Zhai, J.; Tian, C. Bienzymatic glucose biosensor based on co-immobilization of peroxidase and glucose oxidase on a carbon nanotubes electrode. Biosens. Bioelectron. 2007, 23, 528–535.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Qu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Qu, K., Xu, B. et al. Multicolor luminescent carbon nanoparticles: Synthesis, supramolecular assembly with porphyrin, intrinsic peroxidase-like catalytic activity and applications. Nano Res. 4, 908–920 (2011). https://doi.org/10.1007/s12274-011-0147-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0147-4

Keywords

Navigation