Skip to main content
Log in

Assessment of high-frequency performance limits of graphene field-effect transistors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

High frequency performance limits of graphene field-effect transistors (FETs) down to a channel length of 20 nm have been examined by using self-consistent quantum simulations. The results indicate that although Klein band-to-band tunneling is significant for sub-100 nm graphene FETs, it is possible to achieve a good transconductance and ballistic on-off ratio larger than 3 even at a channel length of 20 nm. At a channel length of 20 nm, the intrinsic cut-off frequency remains at a few THz for various gate insulator thickness values, but a thin gate insulator is necessary for a good transconductance and smaller degradation of cut-off frequency in the presence of parasitic capacitance. The intrinsic cut-off frequency is close to the LC characteristic frequency set by graphene kinetic inductance (L) and quantum capacitance (C), which is about 100 GHz·μm divided by the gate length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  CAS  Google Scholar 

  2. Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204.

    Article  CAS  Google Scholar 

  3. Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S. W.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.

    Article  CAS  Google Scholar 

  4. Meric, I.; Baklitskaya, N.; Kim, P.; Shepard, K.; RF performance of top-gated, zero-bandgap graphene field-effect transistors. Tech. Dig. Int. Electron. Device Meeting (IEDM) 2008, 4796738, 1–4.

    Google Scholar 

  5. Lin, Y. M.; Dimitrakopoulos, C.; Jenkins, K. A.; Farmer, D. B.; Chiu, H. Y.; Grill, A.; Avouris, Ph. 100-GHz Transistors from wafer-scale epitaxial graphene. Science 2010, 327, 662.

    Article  CAS  Google Scholar 

  6. Liao, L.; Bai, J.; Cheng, R.; Lin, Y.; Jiang, S.; Qu, Y.; Huang, Y.; Duan, X. Sub-100 nm channel length graphene transistors. Nano Lett. 2010, 10, 3952–3956.

    Article  CAS  Google Scholar 

  7. Wu, Y.; Lin, Y.; Jenkins, K., et al. RF performance of short channel graphene field-effect transistor. Tech. Dig. Int. Electron. Device Meeting (IEDM) 2010, 226–228.

  8. Liao, L.; Lin, Y. C.; Bao, M. Q.; Chen, R.; Bai, J. W.; Liu, Y.; Qu, Y. Q.; Wang, K. L.; Huang, Y.; Duan, X. F. High-speed graphene transistors with a self-aligned nanowire gate. Nature 2010, 467, 305–308.

    Article  CAS  Google Scholar 

  9. Lin, Y. M.; Jenkins, K. A.; Garcia, A. V.; Small, J. P.; Farmer, D. B.; Avouris, P. Operation of graphene transistors at gigahertz frequencies. Nano Lett. 2009, 9, 422–426.

    Article  CAS  Google Scholar 

  10. Schwierz, F. Graphene transistors. Nature Nanotechnology 2010, 5, 487–496.

    Article  CAS  Google Scholar 

  11. Datta, S. Quantum Transport: Atom to Transistor. Cambridge University Press: Cambridge, UK, 2005.

    Google Scholar 

  12. Svizhenko, A.; Anantram, M. P. Effect of scattering and contacts on current and electrostatics in carbon nanotubes. Phys. Rev. B 2005, 72, 085430.

    Article  Google Scholar 

  13. Rutherglen, C.; Jain, D.; Burke, P. Nanotube electronics for radiofrequency applications. Nat. Nanotechnol. 2009, 4, 811–819.

    Article  CAS  Google Scholar 

  14. Guo, J.; Hasan, S.; Javey, A.; Bosman, G.; Lundstrom, M. Assessment of high-frequency performance potential of carbon nanotube transistors. IEEE Trans. Nanotechnol. 2005, 4, 715–721.

    Article  Google Scholar 

  15. Katsnelson, M.; Novoselov, K.; Geim, A. Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2006, 2, 620–625.

    Article  CAS  Google Scholar 

  16. Ryzhii, V.; Ryzhii, M.; Otsuji, T. Thermionic and tunneling transport mechanisms in graphene field-effect transistors. Phys. Stat. Sol. A 2008, 205, 1527–1533.

    Article  CAS  Google Scholar 

  17. Burke, P. Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans. Nanotechnol. 2002, 1, 129–144.

    Article  Google Scholar 

  18. Chen, Y.; Ouyang, Y.; Guo, J.; Wu, T. Time-dependent quantum transport and non-quasistatic effects in carbon nanotube transistors. Appl. Phys. Lett. 2006, 89, 203122.

    Article  Google Scholar 

  19. Yoon, Y.; Ouyang, Y.; Guo, J. Effect of phonon scattering on intrinsic delay and cut-off frequency of carbon nano tube FETs. IEEE Trans. Electron. Dev. 2006, 53, 2467–2470.

    Article  CAS  Google Scholar 

  20. Burke, P. AC performance of nanoelectronics: Towards a ballistic THz nanotube transistor. Solid-State Electron. 2004, 48, 1981–1986.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chauhan, J., Guo, J. Assessment of high-frequency performance limits of graphene field-effect transistors. Nano Res. 4, 571–579 (2011). https://doi.org/10.1007/s12274-011-0113-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0113-1

Keywords

Navigation