Skip to main content
Log in

Effect of magnet implant on iron biodistribution of Fe@C nanoparticles in the mouse

  • Research Article
  • Drug Development
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

The in vivo biodistribution of Fe@C nanoparticles (NP) was tested in mice bearing an inflammatory focus induced by injecting carrageenan into an air pouch previously formed on their back. The animals were intravenously injected NP with a high (60 mg/kg) or a low iron dose (6 mg/kg) and sacrificed 2 h later. Blood and organ samples (liver, spleen, lung, and kidney) were obtained; washed exudates were also collected. Iron concentration in plasma, blood cells, organs, and exudates was determined by flameless atomic-absorption-spectroscopy after digestion of organic material. Pouch exudate volume increased in all groups of mice with experimental inflammation. After i.v. administration of the high and low dose of NP, iron in exudate increased by 83.3% and 92.2%, respectively. A similar increase in hepatic iron appeared after the high dose (78%), but no increase appeared after the low dose. When the magnet was present, a 157% and 119% increase of iron in exudate appeared after both doses of NPs, but only the high dose of NP increased iron liver (60%). The presence of a magnetic field in the pouch favored selective biodistribution of NP in the inflammatory focus. These results indicate that mice with an inflammatory compartment are suitable for primary screening of different NP types. They also show that selective biodistribution is greater when a low dose of NP was used and that distribution in the target organ was increased by the magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad, K. A., Drummond, J. L., Graber, T., and BeGole, E., Magnetic strength and corrosion of rare earth magnets. Am. J. Orthod. Dentofacial. Orthop., 130, 275.e11–275.e15 (2006).

    Article  Google Scholar 

  • Arruebo, M., Fernández-Pacheco, R., Ibarra, M. R., and Santamaría, J., Magnetic nanoparticles for drug delivery. Nanotoday, 2, 22–32 (2007).

    Google Scholar 

  • Azarmi, S., Roa, W. H., and Löbenberg, R., Targeted delivery of nanoparticles for the treatment of lung diseases. Adv. Drug Del. Rev., 60, 863–875 (2008).

    Article  CAS  Google Scholar 

  • Barry, S. E., Challenges in the development of magnetic particles for therapeutic applications. Int. J. Hyperthermia, 24, 451–466 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Butoescu, N., Seemayer, C. A., Foti, M., Jordan, O., and Doelker, E., Dexamethasone-containing PLGA superparamagnetic microparticles as carriers for the local treatment of arthritis. Biomaterials, 30, 1772–1780 (2009).

    Article  PubMed  CAS  Google Scholar 

  • De Jong, W. H. and Borm, P. J. A.., Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomed., 3, 133–149 (2008).

    Article  Google Scholar 

  • De Jong, W. H., Hagens, W. I., Krystek, P., Burger, M. C., Sips, A. J. A. M., and Geertsma, R. E., Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials, 19, 1912–1919 (2008).

    Article  Google Scholar 

  • Dobson, J., Magnetic Nanoparticles for drug delivery. Drug Dev. Res., 67, 55–60 (2006).

    Article  CAS  Google Scholar 

  • Evans, R. D. and McDonald, F., Effect of corrosion products (neodymium iron boron) on oral fibroblast proliferation. J. Appl. Biomater., 6, 199–202 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Pacheco, R., Marquina, C., Valdivia, J. G., Gutiérrez, M., Romero, M. S., Cornudella, R., Laborda, A., Viloria, A., Higuera, T., García, A., García de Jalón, J. A., and Ibarra, M. R., Magnetic nanoparticles for local drug delivery using magnetic implants. J. Magn. Magn. Mater., 311, 318–322 (2007).

    Article  Google Scholar 

  • Gamarra, L. F., Pontuschka, W. M., Amaro, E., Jr., Costa-Filho, A. J., Brito, G. E. S., Vieira, E. D., Carneiro, S. M., Escriba, D. M., Falleiros, A. M. F., and Salvador, V. L. Kinetics of elimination and distribution in blood and liver of biocompatible ferrofluids based on Fe3O4 nanoparticles: An EPR and XRF study. Mat. Sci. Engin C, 28, 519–525 (2008).

    Article  CAS  Google Scholar 

  • Goya, G. F, Grazú, V., and Ibarra, M. R., Magnetic Nanoparticles for Cancer Therapy. Curr. Nanosci., 4, 1–16 (2008).

    Article  CAS  Google Scholar 

  • Häfeli, U.O. Magnetically modulated therapeutic systems. Int. J. Pharm., 277, 19–24 (2004).

    Article  PubMed  Google Scholar 

  • Ito, A., Shinkai, M., Honda, H., and Kobayashi, T., Medical Application of Funcionalized Magnetic Nanoparticles. J. Biosci. Bioeng., 100, 1–11 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Kim, J. S., Yoon, T.-J., Yu, K. N., Kim, B. G., Park, S. J., Kim, H. W., Lee, K. H., Park, S. B, Lee, J. K., and Cho, M. H., Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicological. Sci., 89, 338–347 (2006).

    Article  CAS  Google Scholar 

  • Kreuter, J., Täuber U., and Illi V., Distribution and elimination of poly(methyl-2-14C-methacrylate) nanoparticle radioactivity after injection in rats and mice. J. Pharm. Sci., 68, 1443–1447 (2006).

    Article  Google Scholar 

  • Ma, H.-L., Qi, X.-R., Ding, W.-X., Maitani, Y., and Nagai, T., Magnetic targeting after femoral artery administration and biocompatibility assessment of superparamagnetic iron oxide nanoparticles. J. Biomed. Mat. Res., 84, 598–606 (2008a).

    Article  Google Scholar 

  • Ma, H. L., Xu, Y. F., Qi, X. R., Maitani, Y., and Nagai, T., Superparamagnetic iron oxide nanoparticles stabilized by alginate: pharmacokinetics, tissue distribution, and applications in detecting liver cancers. Int. J. Pharm., 354, 217–226 (2008b).

    Article  PubMed  CAS  Google Scholar 

  • Malaiya, A. and Vyas, S. P., Peparation and characterization of indomethacin magnetic nanoparticles. J. Microencapsul., 5, 243–253 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Mc Bain, S. C., Yiu, H. H., and Dobson, J., Magnetic nanoparticles for gene and drug delivery. Int. J. Nanomed., 3, 169–180 (2008).

    CAS  Google Scholar 

  • Mitruka, B. M. and Rawnsley, H. M., Clinical Biochemical and hematological reference values in normal experimental animals. Masson Publishing USA, Inc, New York, p. 115, (1997).

    Google Scholar 

  • Noar, J. H., Wahab, A., Evans, R. D., and Wojcik, A. G., The durability of parylene coatings on neodymium-iron-boron magnets. Eur. J. Orthod., 21, 685–693 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Romano, M., Faggioni, R., Sironi, M., Sacco, S., Echtenacher, B., Di Santo, E., Salmona, M., and Ghezzi, P., Carrageenaninduced acute inflammation in the mouse air pouch synovial model. Role of tumor necrosis factor. Mediat. Inflamm., 6, 32–38 (1997).

    Article  CAS  Google Scholar 

  • Soler, M. A., Báo, S. N., Alcântara, G. B., Tibúrcio, V. H., Paludo, G. R., Santana, J. F., Guedes, M. H., Lima, E. C. D., Lacava, Z. G. M., and Morais, P. C., Interaction of Erythrocytes with Magnetic Nanoparticles. J. Nanosci. Nanotechnol., 7, 1069–1071 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Sonavane, G., Tomoda, K., and Makino, K., Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf. B Biointerfaces, 66, 274–280 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Van Beers, B. E., Sempoux, C., Materne, R., Delos, M., and Smith, A. M., Biodistribution of ultrasmall iron oxide particles in the rat liver. J. Mag. Reson. Imaging., 13, 594–599 (2001).

    Article  Google Scholar 

  • Vyas, S. P. and Malaiya, A., In vivo characterization of indomethacin magnetic polymethyl methacrilate nanoparticles. J. Microencapsul., 5, 243–253 (1989).

    Google Scholar 

  • Wilson, M., Patel, H., Lpendema, H., Noar, J. H., Hunt, N. P., and Mordan, N. J., Corrosion of the intra-oral magnets by multi-species biofilms in the presence and absence of sucrose. Biomaterials, 18, 53–57 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Yellen, B. B., Forbes, Z. G., Halverson, D. S., Fridman, G., Barbee, K. A., Chorny, M., Levy, R., and Friedman, G., Targeted drug delivery to magnetic implants for therapeutic applications. J. Magn. Magn. Mater., 293, 647–654 (2005).

    Article  CAS  Google Scholar 

  • Zavisova, V., Koneracka, M., Strbak, O., Tomasovicova, N., Kopcansky, P., Timko, M., and Vavra, I., Encapsulation of indomethacin in magnetic biodegradable polymer nanoparticles. J. Mag. Magn. Mat., 311, 379–382 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvira Escribano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escribano, E., Fernández-Pacheco, R., Valdivia, J.G. et al. Effect of magnet implant on iron biodistribution of Fe@C nanoparticles in the mouse. Arch. Pharm. Res. 35, 93–100 (2012). https://doi.org/10.1007/s12272-012-0109-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-012-0109-8

Key words

Navigation