Skip to main content
Log in

Stimulation Mapping of the Pulmonary Artery for Denervation Procedures: an Experimental Study

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Transcatheter pulmonary artery denervation (PADN) has been developed for the correction of pulmonary hypertension. We investigated pulmonary artery stimulation mapping and its role in PADN procedures. Artery stimulation was performed in 17 Landrace pigs. Low-frequency stimulation defined areas of ventricular and atrial capture. High-frequency stimulation evoked the following responses: sinus rhythm slowing and/or atrial rhythm acceleration in 59% of animals, phrenic nerve capture in 100%, and laryngeal recurrent nerve capture in 23%. The sites with evoked heart rate responses were marked by discrete radiofrequency ablations (RFA). An autopsy showed nerves in the adventitia and perivascular fat under the RFA sites, and the lack of muscarinic-1, tyrosine hydroxylase, and dopamine-5 receptors’ expression. During PADN, areas adjacent to the course of phrenic and recurrent laryngeal nerves should be avoided. RFA at points with heart rate responses leads to the non-reproducibility of evoked reactions and the disappearance of neural markers’ expression.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CVP:

Central venous pressure

HFS:

High-frequency stimulation

ISABP:

Invasive systemic arterial blood pressure

LFS:

Low-frequency stimulation

mPAP:

Mean pulmonary artery pressure

PA:

Pulmonary artery

PADN:

Pulmonary artery denervation

PAH:

Pulmonary arterial hypertension

PAP:

Pulmonary artery pressure

RFA:

Radiofrequency ablation

References

  1. Ginoux, M., Turquier, S., Chebib, N., Glerant, J. C., Traclet, J., Philit, F., Sénéchal, A., Mornex, J. F., & Cottin, V. (2018). Impact of comorbidities and delay in diagnosis in elderly patients with pulmonary hypertension. ERJ Open Res., 4, 00100–02018.

    Article  Google Scholar 

  2. Velez-Roa, S., Ciarka, A., Najem, B., Vachiery, J. L., Naeije, R., & van de Borne, P. (2004). Increased sympathetic nerve activity in pulmonary artery hypertension. Circulation., 110, 1308–1312.

    Article  Google Scholar 

  3. Rudner, X. L., Berkowitz, D. E., Booth, J. V., Funk, B. L., Cozart, K. L., D'Amico, E. B., El-Moalem, H., Page, S. O., Richardson, C. D., Winters, B., Marucci, L., & Schwinn, D. A. (1999). Subtype specific regulation of human vascular alpha(1)-adrenergic receptors by vessel bed and age. Circulation., 100, 2336–2343.

    Article  CAS  Google Scholar 

  4. Chen, S. L., Zhang, F. F., Xu, J., Xie, D. J., Zhou, L., Nguyen, T., & Stone, G. W. (2013). Pulmonary artery denervation to treat pulmonary arterial hypertension: the single-center, prospective, first-in-man PADN-1 study (first-in-man pulmonary artery denervation for treatment of pulmonary artery hypertension). Journal of the American College of Cardiology, 62, 1092–1100.

    Article  Google Scholar 

  5. Rothman, A. M., Arnold, N. D., Chang, W., Watson, O., Swift, A. J., Condliffe, R., Elliot, C. A., Kiely, D. G., Suvarna, S. K., Gunn, J., & Lawrie, A. (2015). Pulmonary artery denervation reduces pulmonary artery pressure and induces histological changes in an acute porcine model of pulmonary hypertension. Circulation. Cardiovascular Interventions, 8, e002569.

    Article  Google Scholar 

  6. Fujisawa, T., Kataoka, M., Kawakami, T., Isobe, S., Nakajima, K., Kunitomi, A., Kashimura, S., Katsumata, Y., Nishiyama, T., Kimura, T., Nishiyama, N., Aizawa, Y., Murata, M., Fukuda, K., & Takatsuki, S. (2017). Pulmonary artery denervation by determining targeted ablation sites for treatment of pulmonary arterial hypertension. Circulation. Cardiovascular Interventions, 10, e005812.

    Article  Google Scholar 

  7. Goncharova, N. S., Moiseeva, O. M., Condori Leandro, H. I., Zlobina, I. S., Berezina, A. V., Malikov, K. N., Tashkhanov, D. M., Lebedev, D. S., & Mikhaylov, E. N. (2020). Electrical stimulation-guided approach to pulmonary artery catheter ablation in patients with idiopathic pulmonary arterial hypertension: a pilot feasibility study with a 12-month follow-up. BioMed Research International, 2020, 8919515.

    Article  Google Scholar 

  8. Chen, S. L., Zhang, H., Xie, D. J., Zhang, J., Zhou, L., Rothman, A. M., & Stone, G. W. (2015). Hemodynamic, functional, and clinical responses to pulmonary artery denervation in patients with pulmonary arterial hypertension of different causes: phase II results from the Pulmonary Artery Denervation-1 Study. Circulation. Cardiovascular Interventions, 8, e002837.

    Article  Google Scholar 

  9. Roehl, A. B., Steendijk, P., Baumert, J. H., Schnoor, J., Rossaint, R., & Hein, M. (2009). Comparison of 3 methods to induce acute pulmonary hypertension in pigs. Comparative Medicine, 59, 280–286.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Singh, I., Oliveira, R. K. F., Naeije, R., Rahaghi, F. N., Oldham, W. M., Systrom, D. M., & Waxman, A. B. (2019). Pulmonary vascular distensibility and early pulmonary vascular remodeling in pulmonary hypertension. Chest., 156, 724–732.

    Article  Google Scholar 

  11. Mitrofanova, L. B., Gorshkov, A. N., Lebedev, D. S., & Mikhaylov, E. N. (2014). Evidence of specialized tissue in human interatrial septum: histological, immunohistochemical and ultrastructural findings. PLoS One, 9, e113343.

    Article  Google Scholar 

  12. Scherlag, B. J., Yamanashi, W. S., Schauerte, P., Scherlag, M., Sun, Y. X., Hou, Y., Jackman, W. M., & Lazzara, R. (2002). Endovascular stimulation within the left pulmonary artery to induce slowing of heart rate and paroxysmal atrial fibrillation. Cardiovascular Research, 54, 470–475.

    Article  CAS  Google Scholar 

  13. Ramos-Villalobos, L. E., Colin Lizalde, L., Márquez, M. F., Iturralde, P., & Castillo, F. (2017). Postintervention dyspnea after radiofrequency catheter ablation: think of a phrenic nerve injury. Case Reports in Cardiology, 2017, 6418070.

    Article  Google Scholar 

  14. Swallow, E. B., Dayer, M. J., Oldfield, W. L., Moxham, J., & Polkey, M. I. (2006). Right hemi-diaphragm paralysis following cardiac radiofrequency ablation. Respiratory Medicine, 100, 1657–1659.

    Article  CAS  Google Scholar 

  15. Pai, R. K., Boyle, N. G., Child, J. S., & Shivkumar, K. (2005). Transient left recurrent laryngeal nerve palsy following catheter ablation of atrial fibrillation. Heart Rhythm, 2, 182–184.

    Article  Google Scholar 

  16. Romero, J., Natale, A., Lakkireddy, D., Cerna, L., Diaz, J. C., Alviz, I., Cerrud-Rodriguez, R. C., Grupposo, V., Rios, S. A., Chernobelsky, E., Elsayed, M. G., Garcia, M., & Di Biase, L. (2020). Mapping and localization of the left phrenic nerve during left atrial appendage electrical isolation to avoid inadvertent injury in patients undergoing catheter ablation of atrial fibrillation. Heart Rhythm, 17, 527–534.

    Article  Google Scholar 

  17. Tan, A. Y., Li, H., Wachsmann-Hogiu, S., Chen, L. S., Chen, P. S., & Fishbein, M. C. (2006). Autonomic innervation and segmental muscular disconnections at the human pulmonary vein-atrial junction: implications for catheter ablation of atrial-pulmonary vein junction. Journal of the American College of Cardiology, 48, 132–143.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Lada A. Murashova, VMD, and Stepan E. Voronin, VMD, for their technical assistance and support in experiment organization.

Funding

The study has been supported by the grant from the Ministry of Science and Higher Education of the Russian Federation (agreement #075-15-2020-800). The funding authority had no impact on the study design nor in the interpretation of the results.

Author information

Authors and Affiliations

Authors

Contributions

NSG, OMM, DSL, and ENM contributed to the study conception and design. Material preparation, data collection, and analysis were performed by HICL, ADV, NSG, LEK, EGK, LBM, EMA, and ENM. The first draft of the manuscript was written by HICL, ADV, NSG, and ENM, and all authors commented on the manuscript. All authors read and approved the final manuscript version.

Corresponding author

Correspondence to Evgeny N. Mikhaylov.

Ethics declarations

Conflict of Interest

Author ENM has received speakers and consultation honoraria from Biosense Webster. The other authors declare that they have no conflicts of interest.

Ethical Approval

All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the appropriate institutional committees.

Additional information

Associate Editor Marat Fudim oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Condori Leandro, H., Vakhrushev, A.D., Goncharova, N.S. et al. Stimulation Mapping of the Pulmonary Artery for Denervation Procedures: an Experimental Study. J. of Cardiovasc. Trans. Res. 14, 546–555 (2021). https://doi.org/10.1007/s12265-020-10079-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-020-10079-4

Keywords

Navigation