Skip to main content

Advertisement

Log in

Cardiogenesis: An Embryological Perspective

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Cardiogenesis, considered as the formation of new heart tissue from embryonic, postnatal, or adult cardiac progenitors, is a pivotal concept to understand the rationale of advanced therapies to repair the damaged heart. In this review, we focus on the cellular and molecular regulation of cardiogenesis in the developing embryo, and we dissect the complex interactions that control the diversification and maturation of a variety of cardiac cell lineages. Our aim is to show how the sophisticated anatomical structure of the adult four-chambered heart strongly depends on the fine regulation of the differentiation of cardiac progenitor cells. These events are shown to be progressive and dynamic as well as plastic, so that the patterned differentiation of distinct heart domains is highly dependent on signals provided by nonmyocardial heart components and extracardiac tissues. Finally, we present the core of our knowledge on cardiac embryogenesis in a biomedical context to provide a critical analysis on the logic of cell therapies designed to treat the failing heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abu-Issa, R. & Kirby, M. L. (2007). Heart field, from mesoderm to heart tube. Annual Review Cell Developmental Biology, 23, 45–68.

    CAS  Google Scholar 

  2. Alsan, B. H. & Schultheiss, T. M. (2002). Regulation of avian cardiogenesis by Fgf8 signaling. Development, 129(8), 1935–1943.

    CAS  PubMed  Google Scholar 

  3. Andrée, B., Duprez, D., Vorbusch, B., Arnold, H. H., & Brand, T. (1998). BMP-2 induces ectopic expression of cardiac lineage markers and interferes with somite formation in chicken embryos. Mechanisms of Development, 70(1–2), 119–131.

    PubMed  Google Scholar 

  4. Anversa, P. & Nadal-Ginard, B. (2002). Cardiac chimerism, methods matter. Circulation, 106(18), e129–e131.

    PubMed  Google Scholar 

  5. Arsenian, S., Weinhold, B., Oelgeschläger, M., Rüther, U., & Nordheim, A. (1998). Serum response factor is essential for mesoderm formation during mouse embryogenesis. EMBO Journal, 17(21), 6289–6299.

    CAS  PubMed  Google Scholar 

  6. Bartunek, J., Sherman, W., Vanderheyden, M., Fernandez-Aviles, F., Wijns, W., & Terzic, A. (2009). Delivery of biologics in cardiovascular regenerative medicine. Clinical Pharmacology and Therapeutics, 85(5), 548–552.

    CAS  PubMed  Google Scholar 

  7. Behfar, A., Faustino, R. S., Arrell, D. K., Dzeja, P. P., Perez-Terzic, C., & Terzic, A. (2008). Guided stem cell cardiopoiesis, discovery and translation. Journal of Molecular and Cellular Cardiology, 45(4), 523–529.

    CAS  PubMed  Google Scholar 

  8. Behfar, A., Hodgson, D. M., Zingman, L. V., Perez-Terzic, C., Yamada, S., Kane, G. C., et al. (2005). Administration of allogenic stem cells dosed to secure cardiogenesis and sustained infarct repair. Annals of the New York Academy of Science, 1049, 189–198.

    Google Scholar 

  9. Behfar, A., Perez-Terzic, C., Faustino, R. S., Arrell, D. K., Hodgson, D. M., Yamada, S., et al. (2007). Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. Journal of Experimental Medicine, 204(2), 405–420.

    CAS  PubMed  Google Scholar 

  10. Behfar, A. & Terzic, A. (2007). Cardioprotective repair through stem cell-based cardiopoiesis. Journal of Applied Physiology, 103(4), 1438–1440.

    PubMed  Google Scholar 

  11. Belaguli, N. S., Sepulveda, J. L., Nigam, V., Charron, F., Nemer, M., & Schwartz, R. J. (2000). Cardiac tissue enriched factors serum response factor and GATA-4 are mutual coregulators. Molecular and Cellular Biology, 20(20), 7550–7558.

    CAS  PubMed  Google Scholar 

  12. Beltrami, A. P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Chimenti, S., et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114(6), 763–776.

    CAS  PubMed  Google Scholar 

  13. Beltrami, A. P., Urbanek, K., Kajstura, J., Yan, S. M., Finato, N., Bussani, R., et al. (2001). Evidence that human cardiac myocytes divide after myocardial infarction. New England Journal of Medicine, 344(23), 1750–1757.

    CAS  PubMed  Google Scholar 

  14. Beqqali, A., van Eldik, W., Mummery, C., & Passier, R. (2009). Human stem cells as a model for cardiac differentiation and disease. Cellular and Molecular Life Science, 66(5), 800–813.

    CAS  Google Scholar 

  15. Bettencourt-Dias, M., Mittnacht, S., & Brockes, J. P. (2003). Heterogeneous proliferative potential in regenerative adult newt cardiomyocytes. Journal of Cell Science, 116(Pt 19), 4001–4009.

    CAS  PubMed  Google Scholar 

  16. Biben, C. & Harvey, R. P. (1997). Homeodomain factor Nkx2-5 controls left/right asymmetric expression of bHLH gene eHand during murine heart development. Genes and Development, 11(11), 1357–1369.

    CAS  PubMed  Google Scholar 

  17. Boveri, T. (1910). Die Potenzen der Ascaris-Blastomeren bei abgeänderter Furchung, zugleich ein Beitrag zur Frage qualitativ-ungleicher Chromosomen-Teilung. Festschrift für Richard Hertwig (Vol. 3). Jena: Gustav Fischer.

    Google Scholar 

  18. Buckingham, M., Meilhac, S., & Zaffran, S. (2005). Building the mammalian heart from two sources of myocardial cells. Nature Reviews Genetics, 6(11), 826–835.

    CAS  PubMed  Google Scholar 

  19. Cai, C. L., Liang, X., Shi, Y., Chu, P. H., Pfaff, S. L., Chen, J., et al. (2003). Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Developmental Cell, 5(6), 877–889.

    CAS  PubMed  Google Scholar 

  20. Camenisch, T., Molin, D. G., Person, A., Runyan, R. B., Gittenberger-de Groot, A. C., McDonald, J. A., et al. (2002). Temporal and distinct TGFbeta ligand requirements during mouse and avian endocardial cushion morphogenesis. Developmental Biology, 248(1), 170–181.

    CAS  PubMed  Google Scholar 

  21. Chang, H. H., Hemberg, M., Barahona, M., Ingber, D. E., & Huang, S. (2008). Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature, 453(7194), 544–547.

    CAS  PubMed  Google Scholar 

  22. Chen, T. H., Chang, T. C., Kang, J. O., Choudhary, B., Makita, T., Tran, C. M., et al. (2002). Epicardial induction of fetal cardiomyocyte proliferation via a retinoic acid-inducible trophic factor. Developmental Biology, 250(1), 198–207.

    CAS  PubMed  Google Scholar 

  23. Chen, J., Kubalak, S. W., & Chien, K. R. (1998). Ventricular muscle-restricted targeting of the RXRalpha gene reveals a non-cell-autonomous requirement in cardiac chamber morphogenesis. Development, 125(10), 1943–1949.

    CAS  PubMed  Google Scholar 

  24. Chen, C. Y. & Schwartz, R. J. (1996). Recruitment of the tinman homolog Nkx-2.5 by serum response factor activates cardiac alpha-actin gene transcription. Molecular and Cellular Biology, 16(11), 6372–6384.

    CAS  PubMed  Google Scholar 

  25. Christoffels, V. M., Burch, J. B., & Moorman, A. F. (2004). Architectural plan for the heart: early patterning and delineation of the chambers and the nodes. Trends in Cardiovascular Medicine, 14(8), 301–307.

    PubMed  Google Scholar 

  26. Christoffels, V. M., Grieskamp, T., Norden, J., Mommersteeg, M. T., Rudat, C., & Kispert, A. (2009). Tbx18 and the fate of epicardial progenitors. Nature, 458(7240), E8–E9.

    CAS  PubMed  Google Scholar 

  27. Christoffels, V. M., Mommersteeg, M. T., Trowe, M. O., Prall, O. W., de Gier-de Vries, C., Soufan, A. T., et al. (2006). Formation of the venous pole of the heart from an Nkx2-5-negative precursor population requires Tbx18. Circulation Research, 98(12), 1555–1563.

    CAS  PubMed  Google Scholar 

  28. Cohen-Gould, L. & Mikawa, T. (1996). The fate diversity of mesodermal cells within the heart field during chicken early embryogenesis. Developmental Biology, 177(1), 265–273.

    CAS  PubMed  Google Scholar 

  29. Davidson, E. H. & Erwin, D. H. (2006). Gene regulatory networks and the evolution of animal body plans. Science, 311(5762), 796–800.

    CAS  PubMed  Google Scholar 

  30. De la Pompa, J. L., Timmerman, L. A., Takimoto, H., Yoshida, H., Elia, A. J., Samper, E., et al. (1998). Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum. Nature, 392(6672), 182–186.

    PubMed  Google Scholar 

  31. de Lange, F. J., Moorman, A. F., Anderson, R. H., Männer, J., Soufan, A. T., de Gier-de Vries, C., et al. (2004). Lineage and morphogenetic analysis of the cardiac valves. Circulation Research, 95(6), 645–654.

    PubMed  Google Scholar 

  32. Dimmeler, S., Zeiher, A. M., & Schneider, M. D. (2005). Unchain my heart, the scientific foundations of cardiac repair. Journal of Clinical Investigation, 115(3), 572–583.

    CAS  PubMed  Google Scholar 

  33. Dodou, E., Verzi, M. P., Anderson, J. P., Xu, S. M., & Black, B. L. (2004). Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development. Development, 131(16), 3931–3942.

    CAS  PubMed  Google Scholar 

  34. Eisenberg, L. M. (2002). Belief vs. scientific observation: the curious story of the precardiac mesoderm. Anatomical Record, 266(4), 194–197.

    PubMed  Google Scholar 

  35. Eisenberg, C. A. & Bader, D. (1995). QCE-6, a clonal cell line with cardiac myogenic and endothelial cell potentials. Developmental Biology, 167(2), 469–481.

    CAS  PubMed  Google Scholar 

  36. Eisenberg, L. M. & Markwald, R. R. (1995). Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circulation Research, 77(1), 1–6.

    CAS  PubMed  Google Scholar 

  37. Ellison, G. M., Torella, D., Karakikes, I., & Nadal-Ginard, B. (2007). Myocyte death and renewal, modern concepts of cardiac cellular homeostasis. Nature Clinical Practice Cardiovascular Medicine, Suppl 1, S52–S59.

    Google Scholar 

  38. Eriksson, P. S., Perfilieva, E., Björk-Eriksson, T., Alborn, A. M., Nordborg, C., Peterson, D. A., et al. (1998). Neurogenesis in the adult human hippocampus. Nature Medicine, 4(11), 1313–1317.

    CAS  PubMed  Google Scholar 

  39. Garcia-Martinez, V., López-Sanchez, C., Darnell, D. K., & Schoenwolf, G. C. (1996). Experimental analysis of the mechanisms implicated in the induction and commitment of precardiogenic mesodermal cells during avian gastrulation. International Journal of Developmental Biology, Suppl 1, 215S–216S.

    CAS  PubMed  Google Scholar 

  40. Garcia-Martinez, V. & Schoenwolf, G. C. (1993). Primitive-streak origin of the cardiovascular system in avian embryos. Developmental Biology, 159(2), 706–719.

    CAS  PubMed  Google Scholar 

  41. Gittenberger-de Groot, A. C., Vrancken Peeters, M. P., Mentink, M. M., Gourdie, R. G., & Poelmann, R. E. (1998). Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circulation Research, 82(10), 1043–1052.

    CAS  PubMed  Google Scholar 

  42. Goldman, S. A. & Nottebohm, F. (1983). Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proceedings of the National Academy of Sciences USA, 80(8), 2390–2394.

    CAS  Google Scholar 

  43. Goumans, M. J., de Boer, T. P., Smits, A. M., van Laake, L. W., van Vliet, P., Metz, C. H., et al. (2007). TGF-beta1 induces efficient differentiation of human cardiomyocyte progenitor cells into functional cardiomyocytes in vitro. Stem Cell Research, 1(2), 138–149.

    CAS  PubMed  Google Scholar 

  44. Grego-Bessa, J., Luna-Zurita, L., del Monte, G., Bolós, V., Melgar, P., Arandilla, A., et al. (2007). Notch signaling is essential for ventricular chamber development. Developmental Cell, 12(3), 415–429.

    CAS  PubMed  Google Scholar 

  45. Heikinheimo, M., Scandrett, J. M., & Wilson, D. B. (1994). Localization of transcription factor GATA-4 to regions of the mouse embryo involved in cardiac development. Developmental Biology, 164(2), 361–373.

    CAS  PubMed  Google Scholar 

  46. Hoogaars, W. M., Barnett, P., Moorman, A. F., & Christoffels, V. M. (2007). T-box factors determine cardiac design. Cellular and Molecular Life Sciences, 64(6), 646–660.

    CAS  PubMed  Google Scholar 

  47. Kelly, R. G., Brown, N. A., & Buckingham, M. E. (2001). The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Developmental Cell, 1(3), 435–440.

    CAS  PubMed  Google Scholar 

  48. Koshiba-Takeuchi, K., Mori, A. D., Kaynak, B. L., Cebra-Thomas, J., Sukonnik, T., Georges, R. O., et al. (2009). Reptilian heart development and the molecular basis of cardiac chamber evolution. Nature, 461(7260), 95–98.

    CAS  PubMed  Google Scholar 

  49. Kruithof, B. P., van Wijk, B., Somi, S., Kruithof-de Julio, M., Pérez Pomares, J. M., Weesie, F., et al. (2006). BMP and FGF regulate the differentiation of multipotential pericardial mesoderm into the myocardial or epicardial lineage. Developmental Biology, 295(2), 507–522.

    CAS  PubMed  Google Scholar 

  50. Laflamme, M. A. & Murry, C. E. (2005). Regenerating the heart. Nature Biotechnology, 23(7), 845–856.

    CAS  PubMed  Google Scholar 

  51. Laugwitz, K. L., Moretti, A., Lam, J., Gruber, P., Chen, Y., Woodard, S., et al. (2005). Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature, 433(7026), 647–653.

    CAS  PubMed  Google Scholar 

  52. Lavine, K. J., Yu, K., White, A. C., Zhang, X., Smith, C., Partanen, J., et al. (2005). Endocardial and epicardial derived FGF signals regulate myocardial proliferation and differentiation in vivo. Developmental Cell, 8(1), 85–95.

    CAS  PubMed  Google Scholar 

  53. Lepilina, A., Coon, A. N., Kikuchi, K., Holdway, J. E., Roberts, R. W., Burns, C. G., et al. (2006). A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell, 127(3), 607–619.

    CAS  PubMed  Google Scholar 

  54. Liberatore, C. M., Searcy-Schrick, R. D., Vincent, E. B., & Yutzey, K. E. (2002). Nkx-2.5 gene induction in mice is mediated by a Smad consensus regulatory region. Developmental Biology, 244(2), 243–256.

    CAS  PubMed  Google Scholar 

  55. Lickert, H., Kutsch, S., Kanzler, B., Tamai, Y., Taketo, M. M., & Kemler, R. (2002). Formation of multiple hearts in mice following deletion of beta-catenin in the embryonic endoderm. Developmental Cell, 3(2), 171–181.

    CAS  PubMed  Google Scholar 

  56. Lin, Q., Schwarz, J., Bucana, C., & Olson, E. N. (1997). Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science, 276(5317), 1404–1407.

    CAS  PubMed  Google Scholar 

  57. Linask, K. K. & Lash, J. W. (1993). Early heart development, dynamics of endocardial cell sorting suggests a common origin with cardiomyocytes. Developmental Dynamics, 196(1), 62–69.

    CAS  PubMed  Google Scholar 

  58. Lopez-Sanchez, C., Climent, V., Schoenwolf, G. C., Alvarez, I. S., & Garcia-Martinez, V. (2002). Induction of cardiogenesis by Hensen's node and fibroblast growth factors. Cell and Tissue Research, 309(2), 237–249.

    CAS  PubMed  Google Scholar 

  59. Lopez-Sanchez, C., Garcia-Martinez, V., & Schoenwolf, G. C. (2001). Localization of cells of the prospective neural plate, heart and somites within the primitive streak and epiblast of avian embryos at intermediate primitive-streak stages. Cells Tissues Organs, 169(4), 334–346.

    CAS  PubMed  Google Scholar 

  60. Lough, J. & Sugi, Y. (2000). Endoderm and heart development. Developmental Dynamics, 217(4), 327–342.

    CAS  PubMed  Google Scholar 

  61. Lyons, I., Parsons, L. M., Hartley, L., Li, R., Andrews, J. E., Robb, L., et al. (1995). Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeobox gene Nkx2-5. Genes and Development, 9(13), 1654–1666.

    CAS  PubMed  Google Scholar 

  62. Ma, Q., Zhou, B., & Pu, W. T. (2008). Reassessment of Isl1 and Nkx2-5 cardiac fate maps using a Gata4-based reporter of Cre activity. Developmental Biology, 323(1), 98–104.

    CAS  PubMed  Google Scholar 

  63. Männer, J. (1999). Does the subepicardial mesenchyme contribute myocardioblasts to the myocardium of the chick embryo heart? A quail-chick chimera study tracing the fate of the epicardial primordium. The Anatomical Record, 255(2), 212–226.

    PubMed  Google Scholar 

  64. Männer, J., Pérez-Pomares, J. M., Macías, D., & Muñoz-Chápuli, R. (2001). The origin, formation and developmental significance of the epicardium, a review. Cells Tissues Organs, 169(2), 89–103.

    PubMed  Google Scholar 

  65. Mansilla, A., López-Sánchez, C., de la Rosa, E. J., García-Martínez, V., Martínez-Salas, E., de Pablo, F., et al. (2005). Developmental regulation of a proinsulin messenger RNA generated by intron retention. EMBO Reports, 6(12), 1182–1187.

    CAS  PubMed  Google Scholar 

  66. Martin, C. M., Meeson, A. P., Robertson, S. M., Hawke, T. J., Richardson, J. A., Bates, S., et al. (2004). Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Developmental Biology, 265(1), 262–275.

    CAS  PubMed  Google Scholar 

  67. Martínez-Estrada, O. M., Lettice, L. A., Essafi, A., Guadix, J. A., Slight, J., Velecela, V., et al. (2009). Wt1 is required for mesenchymal cardiovascular progenitor cell formation in epicardium and ES cells through direct transcriptional control of snail and ecadherin. Nature Genetics (in press).

  68. Martinez-Fernandez, A., Nelson, T. J., Yamada, S., Reyes, S., Alekseev, A. E., Perez-Terzic, C., et al. (2009). iPS programmed without c-MYC yield proficient cardiogenesis for functional heart chimerism. Circulation Research, 105, 648–656.

    CAS  PubMed  Google Scholar 

  69. Matsuura, K., Nagai, T., Nishigaki, N., Oyama, T., Nishi, J., Wada, H., et al. (2004). Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. Journal of Biological Chemistry, 279(12), 11384–11391.

    CAS  PubMed  Google Scholar 

  70. Meilhac, S. M., Esner, M., Kelly, R. G., Nicolas, J. F., & Buckingham, M. E. (2004). The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Developmental Cell, 6(5), 685–698.

    CAS  PubMed  Google Scholar 

  71. Meilhac, S. M., Kelly, R. G., Rocancourt, D., Eloy-Trinquet, S., Nicolas, J. F., & Buckingham, M. E. (2003). A retrospective clonal analysis of the myocardium reveals two phases of clonal growth in the developing mouse heart. Development, 130(16), 3877–3889.

    CAS  PubMed  Google Scholar 

  72. Merki, E., Zamora, M., Raya, A., Kawakami, Y., Wang, J., Zhang, X., et al. (2005). Epicardial retinoid X receptor alpha is required for myocardial growth and coronary artery formation. Proceedings of the National Academy of Sciences USA, 102(51), 18455–18460.

    CAS  Google Scholar 

  73. Mjaatvedt, C. H., Nakaoka, T., Moreno-Rodriguez, R., Norris, R. A., Kern, M. J., Eisenberg, C. A., et al. (2001). The outflow tract of the heart is recruited from a novel heart-forming field. Developmental Biology, 238(1), 97–109.

    CAS  PubMed  Google Scholar 

  74. Molkentin, J. D., Lin, Q., Duncan, S. A., & Olson, E. N. (1997). Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes and Development, 11(8), 1061–1072.

    CAS  PubMed  Google Scholar 

  75. Moore, A. W., McInnes, L., Kreidberg, J., Hastie, N. D., & Schedl, A. (1999). YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development, 126(9), 1845–1857.

    CAS  PubMed  Google Scholar 

  76. Moorman, A. F., Christoffels, V. M., Anderson, R. H., & van den Hoff, M. J. (2007). The heart-forming fields, one or multiple? Philosophical Transactions of the Royal Society of London B: Biological Sciences, 362(1484), 1257–1265.

    Google Scholar 

  77. Moretti, A., Lam, J., Evans, S. M., & Laugwitz, K. L. (2007). Biology of Isl1+ cardiac progenitor cells in development and disease. Cellular and Molecular Life Sciences, 64(6), 674–682.

    CAS  PubMed  Google Scholar 

  78. Morin, S., Charron, F., Robitaille, L., & Nemer, M. (2000). GATA-dependent recruitment of MEF2 proteins to target promoters. EMBO Journal, 19(9), 2046–2055.

    CAS  PubMed  Google Scholar 

  79. Morrisey, E. E., Ip, H. S., Tang, Z., Lu, M. M., & Parmacek, M. S. (1997). GATA-5, a transcriptional activator expressed in a novel temporally and spatially-restricted pattern during embryonic development. Developmental Biology, 183(1), 21–36.

    CAS  PubMed  Google Scholar 

  80. Moses, K. A., DeMayo, F., Braun, R. M., Reecy, J. L., & Schwartz, R. J. (2001). Embryonic expression of an Nkx2-5/Cre gene using ROSA26 reporter mice. Genesis, 31(4), 176–180.

    CAS  PubMed  Google Scholar 

  81. Nadal-Ginard, B., Kajstura, J., Leri, A., & Anversa, P. (2003). Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circulation Research, 92(2), 139–150.

    CAS  PubMed  Google Scholar 

  82. Needham, J. (1950). Biochemistry and morphogenesis. Cambridge: Cambridge University Press.

    Google Scholar 

  83. Nemer, G. & Nemer, M. (2002). Cooperative interaction between GATA5 and NF-ATc regulates endothelial–endocardial differentiation of cardiogenic cells. Development, 129(17), 4045–4055.

    CAS  PubMed  Google Scholar 

  84. Nijmeijer, R. M., Leeuwis, J. W., Delisio, A., Mummery, C. L., de Sousa, C., & Lopes, S. M. (2009). Visceral endoderm induces specification of cardiomyocytes in mice. Stem Cell Research, 3, 170–178.

    PubMed  Google Scholar 

  85. Oh, H., Bradfute, S. B., Gallardo, T. D., Nakamura, T., Gaussin, V., Mishina, Y., et al. (2003). Cardiac progenitor cells from adult myocardium, homing, differentiation, and fusion after infarction. Proceedings of the National Academy of Sciences USA, 100(21), 12313–12318.

    CAS  Google Scholar 

  86. Orts-Llorca, F. & Jiménez-Collado, J. (1968). A radioautographic analysis of the prospective cardiac area in the chick blastoderm by means of labelled grafts. Wilhelm Roux’ Archiv, 160, 298–312.

    Google Scholar 

  87. Passier, R., van Laake, L. W., & Mummery, C. L. (2008). Stem-cell-based therapy and lessons from the heart. Nature, 453(7193), 322–329.

    CAS  PubMed  Google Scholar 

  88. Paton, J. A. & Nottebohm, F. N. (1984). Neurons generated in the adult brain are recruited into functional circuits. Science, 225(4666), 1046–1048.

    CAS  PubMed  Google Scholar 

  89. Patwardhan, V., Fernandez, S., Montgomery, M., & Litvin, J. (2000). The rostro-caudal position of cardiac myocytes affects their fate. Developmental Dynamics, 218(1), 123–135.

    CAS  PubMed  Google Scholar 

  90. Pérez-Pomares, J. M., Carmona, R., González-Iriarte, M., Atencia, G., Wessels, A., & Muñoz-Chápuli, R. (2002). Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. International Journal of Developmental Biology, 46(8), 1005–1013.

    PubMed  Google Scholar 

  91. Pérez-Pomares, J. M., Macías, D., García-Garrido, L., & Muñoz-Chápuli, R. (1998). The origin of the subepicardial mesenchyme in the avian embryo, an immunohistochemical and quail-chick chimera study. Developmental Biology, 200(1), 57–68.

    PubMed  Google Scholar 

  92. Pérez-Pomares, J. M. & Muñoz-Chápuli, R. (2002). Epithelial–mesenchymal transitions: A mesodermal cell strategy for evolutive innovation in Metazoans. Anatomical Record, 268(3), 343–351.

    PubMed  Google Scholar 

  93. Pérez-Pomares, J. M., Phelps, A., Sedmerova, M., Carmona, R., González-Iriarte, M., Muñoz-Chápuli, et al. (2002). Experimental studies on the spatiotemporal expression of WT1 and RALDH2 in the embryonic avian heart, a model for the regulation of myocardial and valvuloseptal development by epicardially derived cells (EPDCs). Developmental Biology, 247(2), 307–326.

    PubMed  Google Scholar 

  94. Pfister, O., Mouquet, F., Jain, M., Summer, R., Helmes, M., Fine, A., et al. (2005). CD31− but Not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circulation Research, 97(1), 52–61.

    CAS  PubMed  Google Scholar 

  95. Poss, K. D., Nechiporuk, A., Hillam, A. M., Johnson, S. L., & Keating, M. T. (2002). Mps1 defines a proximal blastemal proliferative compartment essential for zebrafish fin regeneration. Development, 129(22), 5141–5149.

    CAS  PubMed  Google Scholar 

  96. Poss, K. D., Wilson, L. G., & Keating, M. T. (2002). Heart regeneration in zebrafish. Science, 298(5601), 2188–2190.

    CAS  PubMed  Google Scholar 

  97. Prall, O. W., Menon, M. K., Solloway, M. J., Watanabe, Y., Zaffran, S., Bajolle, F., et al. (2007). An Nkx2-5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation. Cell, 128(5), 947–959.

    CAS  PubMed  Google Scholar 

  98. Rana, M. S., Horsten, N. C., Tesink-Taekema, S., Lamers, W. H., Moorman, A. F., & van den Hoff, M. J. (2007). Trabeculated right ventricular free wall in the chicken heart forms by ventricularization of the myocardium initially forming the outflow tract. Circulation Research, 100(7), 1000–1007.

    CAS  PubMed  Google Scholar 

  99. Ratajczak, M. Z., Zuba-Surma, E. K., Machalinski, B., Ratajczak, J., & Kucia, M. (2008). Very small embryonic-like stem cells: Purification from adult organs, characterization and biological significance. Stem Cell Reviews, 4(2), 89–99.

    PubMed  Google Scholar 

  100. Redkar, A., Montgomery, M., & Litvin, J. (2001). Fate map of early avian cardiac progenitor cells. Development, 128(12), 2269–2279.

    CAS  PubMed  Google Scholar 

  101. Riley, P., Anson-Cartwright, L., & Cross, J. C. (1998). The Hand1 bHLH transcription factor is essential for placentation and cardiac morphogenesis. Nature Genetic, 18(3), 271–275.

    CAS  Google Scholar 

  102. Rones, M. S., McLaughlin, K. A., Raffin, M., & Mercola, M. (2000). Serrate and Notch specify cell fates in the heart field by suppressing cardiomyogenesis. Development, 127(17), 3865–3876.

    CAS  PubMed  Google Scholar 

  103. Schlange, T., Andrée, B., Arnold, H. H., & Brand, T. (2000). BMP2 is required for early heart development during a distinct time period. Mechanisms of Development, 91(1–2), 259–270.

    CAS  PubMed  Google Scholar 

  104. Schneider, V. A. & Mercola, M. (2001). Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes and Development, 15(3), 304–315.

    CAS  PubMed  Google Scholar 

  105. Schultheiss, T. M., Burch, J. B., & Lassar, A. B. (1997). A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes and Development, 11(4), 451–462.

    CAS  PubMed  Google Scholar 

  106. Searcy, R. D., Vincent, E. B., Liberatore, C. M., & Yutzey, K. E. (1998). A GATA-dependent nkx-2.5 regulatory element activates early cardiac gene expression in transgenic mice. Development, 125(22), 4461–4470.

    CAS  PubMed  Google Scholar 

  107. Skerjanc, I. S., Petropoulos, H., Ridgeway, A. G., & Wilton, S. (1998). Myocyte enhancer factor 2C and Nkx2–5 up-regulate each other's expression and initiate cardiomyogenesis in P19 cells. Journal of Biological Chemistry, 273(52), 34904–34910.

    CAS  PubMed  Google Scholar 

  108. Slack, J. M. W. (1991). From egg to embryo, regional specification in early development. Cambridge: Cambridge University Press.

    Google Scholar 

  109. Snarr, B. S., O'Neal, J. L., Chintalapudi, M. R., Wirrig, E. E., Phelps, A. L., Kubalak, S. W., et al. (2007). Isl1 expression at the venous pole identifies a novel role for the second heart field in cardiac development. Circulation Research, 101(10), 971–974.

    CAS  PubMed  Google Scholar 

  110. Srivastava, D., Thomas, T., Lin, Q., Kirby, M. L., Brown, D., & Olson, E. N. (1997). Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nature Genetics, 16(2), 154–160.

    CAS  PubMed  Google Scholar 

  111. Stanley, E. G., Biben, C., Elefanty, A., Barnett, L., Koentgen, F., Robb, L., et al. (2002). Efficient Cre-mediated deletion in cardiac progenitor cells conferred by a 3'UTR-ires-Cre allele of the homeobox gene Nkx2–5. International Journal of Developmental Biology, 46(4), 431–439.

    CAS  PubMed  Google Scholar 

  112. Stöhr, P. (1925). Experimentelle Studien an embryonale Amphibienherzen. Roux’ Archiv für Entwicklungsmechanik der Organismen, 106, 409–455.

    Google Scholar 

  113. Stuckmann, I., Evans, S., & Lassar, A. B. (2003). Erythropoietin and retinoic acid, secreted from the epicardium, are required for cardiac myocyte proliferation. Developmental Biology, 255(2), 334–349.

    CAS  PubMed  Google Scholar 

  114. Sugi, Y., Yamamura, H., Okagawa, H., & Markwald, R. R. (2004). Bone morphogenetic protein-2 can mediate myocardial regulation of atrioventricular cushion mesenchymal cell formation in mice. Developmental Biology, 269(2), 505–518.

    CAS  PubMed  Google Scholar 

  115. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.

    CAS  PubMed  Google Scholar 

  116. Takahashi, K. & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.

    CAS  PubMed  Google Scholar 

  117. Tam, P. P., Parameswaran, M., Kinder, S. J., & Weinberger, R. P. (1997). The allocation of epiblast cells to the embryonic heart and other mesodermal lineages, the role of ingression and tissue movement during gastrulation. Development, 124(9), 1631–1642.

    CAS  PubMed  Google Scholar 

  118. Tam, P. P. & Zhou, S. X. (1996). The allocation of epiblast cells to ectodermal and germ-line lineages is influenced by the position of the cells in the gastrulating mouse embryo. Developmental Biology, 178(1), 124–132.

    CAS  PubMed  Google Scholar 

  119. Tanaka, M., Chen, Z., Bartunkova, S., Yamasaki, N., & Izumo, S. (1999). The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. Development, 126(6), 1269–1280.

    CAS  PubMed  Google Scholar 

  120. Tateishi, K., Takehara, N., Matsubara, H., & Oh, H. (2008). Stemming heart failure with cardiac- or reprogrammed-stem cells. Journal of Cellular and Molecular Medicine, 12(6A), 2217–2232.

    CAS  PubMed  Google Scholar 

  121. Timmerman, L. A., Grego-Bessa, J., Raya, A., Bertrán, E., Pérez-Pomares, J. M., Díez, J., et al. (2004). Notch promotes epithelial–mesenchymal transition during cardiac development and oncogenic transformation. Genes and Development, 18(1), 99–115.

    CAS  PubMed  Google Scholar 

  122. Tomita, Y., Matsumura, K., Wakamatsu, Y., Matsuzaki, Y., Shibuya, I., Kawaguchi, H., et al. (2005). Cardiac neural crest cells contribute to the dormant multipotent stem cell in the mammalian heart. Journal of Cell Biology, 170, 1135–1146.

    CAS  PubMed  Google Scholar 

  123. Tonegawa, A., Funayama, N., Ueno, N., & Takahashi, Y. (1997). Mesodermal subdivision along the mediolateral axis in chicken controlled by different concentrations of BMP-4. Development, 124(10), 1975–1984.

    CAS  PubMed  Google Scholar 

  124. Torella, D., Ellison, G. M., Karakikes, I., & Nadal-Ginard, B. (2007). Resident cardiac stem cells. Cellular and Molecular Life Sciences, 64(6), 661–673.

    CAS  PubMed  Google Scholar 

  125. Torella, D., Ellison, G. M., Nadal-Ginard, B., & Indolfi, C. (2005). Cardiac stem and progenitor cell biology for regenerative medicine. Trends in Cardiovascular Medicine, 15(6), 229–236.

    CAS  PubMed  Google Scholar 

  126. Urbanek, K., Quaini, F., Tasca, G., Torella, D., Castaldo, C., Nadal-Ginard, B., et al. (2003). Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proceedings of the National Academy of Sciences USA, 100(18), 10440–10445.

    CAS  Google Scholar 

  127. van den Berg, G., Abu-Issa, R., de Boer, B. A., Hutson, M. R., de Boer, P. A., Soufan, A. T., et al. (2009). A caudal proliferating growth center contributes to both poles of the forming heart tube. Circulation Research, 104(2), 179–188.

    PubMed  Google Scholar 

  128. van den Hoff, M. J., Moorman, A. F., Ruijter, J. M., Lamers, W. H., Bennington, R. W., Markwald, R. R., et al. (1999). Myocardialization of the cardiac outflow tract. Developmental Biology, 212(2), 477–490.

    PubMed  Google Scholar 

  129. Van Laake, L. W., Passier, R., Doevendans, P. A., & Mummery, C. L. (2008). Human embryonic stem cell-derived cardiomyocytes and cardiac repair in rodents. Circulation Research, 102(9), 1008–1010.

    PubMed  Google Scholar 

  130. Waldo, K. L., Kumiski, D. H., Wallis, K. T., Stadt, H. A., Hutson, M. R., Platt, D. H., et al. (2001). Conotruncal myocardium arises from a secondary heart field. Development, 128(16), 3179–3188.

    CAS  PubMed  Google Scholar 

  131. Weinhold, B., Schratt, G., Arsenian, S., Berger, J., Kamino, K., Schwarz, H., et al. (2000). Srf(−/−) ES cells display non-cell-autonomous impairment in mesodermal differentiation. EMBO Journal, 19(21), 5835–5844.

    CAS  PubMed  Google Scholar 

  132. Weiss, P. (1939). Principles of development. New York: Holt.

    Google Scholar 

  133. Wernig, M., Meissner, A., Foreman, R., Brambrink, T., Ku, M., Hochedlinger, K., et al. (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 448(7151), 318–324.

    CAS  PubMed  Google Scholar 

  134. Wessels, A. & Pérez-Pomares, J. M. (2004). The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells. The Anatomical Record, 276(1), 43–57.

    CAS  PubMed  Google Scholar 

  135. Wu, H., Lee, S. H., Gao, J., Liu, X., & Iruela-Arispe, M. L. (1999). Inactivation of erythropoietin leads to defects in cardiac morphogenesis. Development, 26(16), 3597–3605.

    Google Scholar 

  136. Xavier-Neto, J., Rosenthal, N., Silva, F. A., Matos, T. G., Hochgreb, T., & Linhares, V. L. (2001). Retinoid signaling and cardiac antero-posterior segmentation. Genesis, 31(3), 97–104.

    CAS  PubMed  Google Scholar 

  137. Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920.

    CAS  PubMed  Google Scholar 

  138. Zhang, X., Ramalho-Santos, M., & McMahon, A. P. (2001). Smoothened mutants reveal redundant roles for Shh and Ihh signalling including regulation of L/R symmetry by the mouse node. Cell, 106(2), 781–792.

    CAS  PubMed  Google Scholar 

  139. Zhang, J., Wilson, G. F., Soerens, A. G., Koonce, C. H., Yu, J., Palece, K. S. P., et al. (2009). Functional cardiomyocytes derived from human induced pluripotent stem cells. Circulation Research, 104(4), e30–e41.

    CAS  PubMed  Google Scholar 

  140. Zhou, B., Ma, Q., Rajagopal, S., Wu, S. M., Domian, I., Rivera-Feliciano, J., et al. (2008). Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature, 454(7200), 109–113.

    CAS  PubMed  Google Scholar 

  141. Zhou, B., von Gise, A., Ma, Q., Rivera-Feliciano, J., & Pu, W. T. (2008). Nkx2-5- and Isl1-expressing cardiac progenitors contribute to proepicardium. Biochemical and Biophysical Research Communications, 375(3), 450–453.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants BFU08-02384 and BFU2009-07929 (Spanish Ministry of Science and Innovation), P06-CTS-01614 (Junta de Andalucía), the Spanish cooperative networks on research TERCEL and RECAVA (ISCIII), and the European Union Sixth Framework Program contract (“HeartRepair”) LSHM-CT-2005-018630. We thank present and past members of our laboratory for their contribution and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Pérez-Pomares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz-Chápuli, R., Pérez-Pomares, J.M. Cardiogenesis: An Embryological Perspective. J. of Cardiovasc. Trans. Res. 3, 37–48 (2010). https://doi.org/10.1007/s12265-009-9146-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-009-9146-1

Keywords

Navigation