Skip to main content

Advertisement

Log in

Proteomic Analysis of the Hippocampus in Mouse Models of Trigeminal Neuralgia and Inescapable Shock-Induced Depression

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

To investigate the behavioral and biomolecular similarity between neuralgia and depression, a trigeminal neuralgia (TN) mouse model was established by constriction of the infraorbital nerve (CION) to mimic clinical trigeminal neuropathic pain. A mouse learned helplessness (LH) model was developed to investigate inescapable foot-shock-induced psychiatric disorders like depression in humans. Mass spectrometry was used to assess changes in the biomolecules and signaling pathways in the hippocampus from TN or LH mice. TN mice developed not only significant mechanical allodynia but also depressive-like behaviors (mainly behavioral despair) at 2 weeks after CION, similar to LH mice. MS analysis demonstrated common and distinctive protein changes in the hippocampus between groups. Many protein function families (such as cell-to-cell signaling and interaction, and cell assembly and organization,) and signaling pathways (e.g., the Huntington’s disease pathway) were involved in chronic neuralgia and depression. Together, these results demonstrated that the LH and TN models both develop depressive-like behaviors, and revealed the involvement of many psychiatric disorder-related biomolecules/pathways in the pathogenesis of TN and LH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yap AU, Chua EK, Dworkin SF, Tan HH, Tan KB. Multiple pains and psychosocial functioning/psychologic distress in TMD patients. Int J Prosthodont 2002, 15: 461–466.

    PubMed  Google Scholar 

  2. Dworkin SF, Von Korff M, LeResche L. Multiple pains and psychiatric disturbance. An epidemiologic investigation. Arch Gen Psychiatry 1990, 47: 239–244.

    Article  CAS  PubMed  Google Scholar 

  3. Ohayon MM, Schatzberg AF. Using chronic pain to predict depressive morbidity in the general population. Arch Gen Psychiatry 2003, 60: 39–47.

    Article  PubMed  Google Scholar 

  4. McWilliams LA, Cox BJ, Enns MW. Mood and anxiety disorders associated with chronic pain: an examination in a nationally representative sample. Pain 2003, 106: 127–133.

    Article  PubMed  Google Scholar 

  5. Varija D, Kumar KP, Reddy KP, Reddy VK. Prolonged constriction of sciatic nerve affecting oxidative stressors & antioxidant enzymes in rat. Indian J Med Res 2009, 129: 587–592.

    CAS  PubMed  Google Scholar 

  6. Bair MJ, Robinson RL, Katon W, Kroenke K. Depression and pain comorbidity: a literature review. Arch Intern Med 2003, 163: 2433–2445.

    Article  PubMed  Google Scholar 

  7. Ma F, Zhang L, Lyons D, Westlund KN. Orofacial neuropathic pain mouse model induced by Trigeminal Inflammatory Compression (TIC) of the infraorbital nerve. Mol Brain 2012, 5: 44.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dwivedi Y, Mondal AC, Rizavi HS, Shukla PK, Pandey GN. Single and repeated stress-induced modulation of phospholipase C catalytic activity and expression: role in LH behavior. Neuropsychopharmacology 2005, 30: 473–483.

    Article  CAS  PubMed  Google Scholar 

  9. Henn V. The treatment of chronic headache. Schweiz Rundsch Med Prax 1993, 82: 540–543.

    CAS  PubMed  Google Scholar 

  10. Borsini F, Cesana R. Further characterisation of potential antidepressant action of flibanserin. Psychopharmacology (Berl) 2001, 159: 64–69.

    Article  CAS  Google Scholar 

  11. Chourbaji S, Zacher C, Sanchis-Segura C, Dormann C, Vollmayr B, Gass P. Learned helplessness: validity and reliability of depressive-like states in mice. Brain Res Brain Res Protoc 2005, 16: 70–78.

    Article  CAS  PubMed  Google Scholar 

  12. Singh GK, Garabadu D, Muruganandam AV, Joshi VK, Krishnamurthy S. Antidepressant activity of Asparagus racemosus in rodent models. Pharmacol Biochem Behav 2009, 91: 283–290.

    Article  CAS  PubMed  Google Scholar 

  13. Willner P. Animal models of depression: validity and applications. Adv Biochem Psychopharmacol 1995, 49: 19–41.

    CAS  PubMed  Google Scholar 

  14. Bremner JD, Narayan M, Anderson ER, Staib LH, Miller HL, Charney DS. Hippocampal volume reduction in major depression. Am J Psychiatry 2000, 157: 115–118.

    Article  CAS  PubMed  Google Scholar 

  15. Iwata M, Shirayama Y, Ishida H, Hazama GI, Nakagome K. Hippocampal astrocytes are necessary for antidepressant treatment of learned helplessness rats. Hippocampus 2011, 21: 877–884.

    CAS  PubMed  Google Scholar 

  16. Khan SA, Ryali V, Bhat PS, Prakash J, Srivastava K, Khanam S. The hippocampus and executive functions in depression. Ind Psychiatry J 2015, 24: 18–22.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Taylor WD, McQuoid DR, Payne ME, Zannas AS, MacFall JR, Steffens DC. Hippocampus atrophy and the longitudinal course of late-life depression. Am J Geriatr Psychiatry 2014, 22: 1504–1512.

    Article  PubMed  Google Scholar 

  18. Li B, Yang CJ, Yue N, Liu Y, Yu J, Wang YQ, et al. Clomipramine reverses hypoalgesia/hypoesthesia and improved depressive-like behaviors induced by inescapable shock in rats. Neurosci Lett 2013, 541: 227–232.

    Article  CAS  PubMed  Google Scholar 

  19. Dwivedi Y, Mondal AC, Payappagoudar GV, Rizavi HS. Differential regulation of serotonin (5HT)2A receptor mRNA and protein levels after single and repeated stress in rat brain: role in learned helplessness behavior. Neuropharmacology 2005, 48: 204–214.

    Article  CAS  PubMed  Google Scholar 

  20. Papolos DF, Edwards E, Marmur R, Lachman HM, Henn FA. Effects of the antiglucocorticoid RU 38486 on the induction of learned helpless behavior in Sprague-Dawley rats. Brain Res 1993, 615: 304–309.

    Article  CAS  PubMed  Google Scholar 

  21. Nakajima A, Tsuboi Y, Suzuki I, Honda K, Shinoda M, Kondo M, et al. PKCgamma in Vc and C1/C2 is involved in trigeminal neuropathic pain. J Dent Res 2011, 90: 777–781.

    Article  CAS  PubMed  Google Scholar 

  22. Constandil L, Goich M, Hernandez A, Bourgeais L, Cazorla M, Hamon M, et al. Cyclotraxin-B, a new TrkB antagonist, and glial blockade by propentofylline, equally prevent and reverse cold allodynia induced by BDNF or partial infraorbital nerve constriction in mice. J Pain 2012, 13: 579–589.

    Article  CAS  PubMed  Google Scholar 

  23. Liang YC, Huang CC, Hsu KS. The synthetic cannabinoids attenuate allodynia and hyperalgesia in a rat model of trigeminal neuropathic pain. Neuropharmacology 2007, 53: 169–177.

    Article  CAS  PubMed  Google Scholar 

  24. Tal M, Bennett GJ. Extra-territorial pain in rats with a peripheral mononeuropathy: mechano-hyperalgesia and mechano-allodynia in the territory of an uninjured nerve. Pain 1994, 57: 375–382.

    Article  CAS  PubMed  Google Scholar 

  25. Vos BP, Strassman AM, Maciewicz RJ. Behavioral evidence of trigeminal neuropathic pain following chronic constriction injury to the rat’s infraorbital nerve. J Neurosci 1994, 14: 2708–2723.

    CAS  PubMed  Google Scholar 

  26. El-Tallawy HN, Farghaly WM, Rageh TA, Shehata GA, Abdel Hakeem MN, Badry R, et al. Prevalence of trigeminal neuralgia in Al-Quseir city (Red sea Governorate), Egypt. Clin Neurol Neurosurg 2013, 115: 1792–1794.

    Article  PubMed  Google Scholar 

  27. Luiz AP, Schroeder SD, Chichorro JG, Calixto JB, Zampronio AR, Rae GA. Kinin B(1) and B(2) receptors contribute to orofacial heat hyperalgesia induced by infraorbital nerve constriction injury in mice and rats. Neuropeptides 2010, 44: 87–92.

    Article  CAS  PubMed  Google Scholar 

  28. Chichorro JG, Zampronio AR, Souza GE, Rae GA. Orofacial cold hyperalgesia due to infraorbital nerve constriction injury in rats: reversal by endothelin receptor antagonists but not non-steroidal anti-inflammatory drugs. Pain 2006, 123: 64–74.

    Article  CAS  PubMed  Google Scholar 

  29. Zhou Y, Kaiser T, Monteiro P, Zhang X, Van der Goes MS, Wang D, et al. Mice with Shank3 mutations associated with ASD and schizophrenia display both shared and distinct defects. Neuron 2016, 89: 147–162.

  30. Lee MM, Reif A, Schmitt AG. Major depression: a role for hippocampal neurogenesis? Curr Top Behav Neurosci 2013, 14: 153–179.

    Article  PubMed  Google Scholar 

  31. Attal N, Perrot S, Fermanian J, Bouhassira D. The neuropathic components of chronic low back pain: a prospective multicenter study using the DN4 Questionnaire. J Pain 2011, 12: 1080–1087.

    Article  PubMed  Google Scholar 

  32. Yalcin I, Bohren Y, Waltisperger E, Sage-Ciocca D, Yin JC, Freund-Mercier MJ, et al. A time-dependent history of mood disorders in a murine model of neuropathic pain. Biol Psychiatry 2011, 70: 946–953.

    Article  PubMed  Google Scholar 

  33. Yu M, Zhang Y, Chen X, Zhang T. Antidepressant-like effects and possible mechanisms of amantadine on cognitive and synaptic deficits in a rat model of chronic stress. Stress 2016, 19: 104–113.

  34. Zhang Z, Wang W, Zhong P, Liu SJ, Long JZ, Zhao L, et al. Blockade of 2-arachidonoylglycerol hydrolysis produces antidepressant-like effects and enhances adult hippocampal neurogenesis and synaptic plasticity. Hippocampus 2015, 25: 16–26.

  35. Liu W, Zhou C. Corticosterone reduces brain mitochondrial function and expression of mitofusin, BDNF in depression-like rodents regardless of exercise preconditioning. Psychoneuroendocrinology 2012, 37: 1057–1070.

  36. Yang L, Shi LJ, Tang B, Han QQ, Yu J, Wu GC, et al. Opposite sex contact and isolation: a novel depression/anxiety model. Neurosci Bull 2016, 32: 92–98.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yan HC, Cao X, Das M, Zhu XH, Gao TM. Behavioral animal models of depression. Neurosci Bull 2010, 26: 327–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Anisman H, Merali Z. Rodent models of depression: learned helplessness induced in mice. Curr Protoc Neurosci 2001, Chapter 8: Unit 8 10C.

  39. Vollmayr B, Gass P. Learned helplessness: unique features and translational value of a cognitive depression model. Cell Tissue Res 2013, 354: 171–178.

    Article  PubMed  Google Scholar 

  40. Tang Y, Ma L, Li N, Guo Y, Yang L, Wu B, et al. Percutaneous trigeminal ganglion radiofrequency thermocoagulation alleviates anxiety and depression disorders in patients with classic trigeminal neuralgia: A cohort study. Medicine (Baltimore) 2016, 95: e5379.

    Article  CAS  Google Scholar 

  41. Hsu CC, Chang CW, Peng CH, Liang CS. Rapid management of trigeminal neuralgia and comorbid major depressive disorder with duloxetine. Ann Pharmacother 2014, 48: 1090–1092.

    Article  PubMed  Google Scholar 

  42. Liu Y, Yang L, Yu J, Zhang YQ. Persistent, comorbid pain and anxiety can be uncoupled in a mouse model. Physiol Behav 2015, 151: 55–63.

    Article  CAS  PubMed  Google Scholar 

  43. Yang L, Yue N, Zhu X, Han Q, Li B, Liu Q, et al. Electroacupuncture promotes proliferation of amplifying neural progenitors and preserves quiescent neural progenitors from apoptosis to alleviate depressive-like and anxiety-like behaviours. Evid Based Complement Alternat Med 2014, 2014: 872568.

    PubMed  PubMed Central  Google Scholar 

  44. Malyszczak K, Szechinski M. Comorbidity of different forms of anxiety disorders and depression. Psychiatr Pol 2004, 38: 603–609.

    PubMed  Google Scholar 

  45. Boyer P. Do anxiety and depression have a common pathophysiological mechanism? Acta Psychiatr Scand Suppl 2000: 24–29.

  46. Paulsen JS, Nehl C, Hoth KF, Kanz JE, Benjamin M, Conybeare R, et al. Depression and stages of Huntington’s disease. J Neuropsychiatry Clin Neurosci 2005, 17: 496–502.

    Article  PubMed  Google Scholar 

  47. Baez S, Herrera E, Gershanik O, Garcia AM, Bocanegra Y, Kargieman L, et al. Impairments in negative emotion recognition and empathy for pain in Huntington’s disease families. Neuropsychologia 2015, 68: 158–167.

    Article  PubMed  Google Scholar 

  48. Yoshida T, Hazan I, Zhang J, Ng SY, Naito T, Snippert HJ, et al. The role of the chromatin remodeler Mi-2beta in hematopoietic stem cell self-renewal and multilineage differentiation. Genes Dev 2008, 22: 1174–1189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Micucci JA, Sperry ED, Martin DM. Chromodomain helicase DNA-binding proteins in stem cells and human developmental diseases. Stem Cells Dev 2015, 24: 917–926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sparmann A, Xie Y, Verhoeven E, Vermeulen M, Lancini C, Gargiulo G, et al. The chromodomain helicase Chd4 is required for Polycomb-mediated inhibition of astroglial differentiation. EMBO J 2013, 32: 1598–1612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Salcedo I, Tweedie D, Li Y, Greig NH. Neuroprotective and neurotrophic actions of glucagon-like peptide-1: an emerging opportunity to treat neurodegenerative and cerebrovascular disorders. Br J Pharmacol 2012, 166: 1586–1599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ghosal S, Myers B, Herman JP. Role of central glucagon-like peptide-1 in stress regulation. Physiol Behav 2013, 122: 201–207.

    Article  CAS  PubMed  Google Scholar 

  53. Zou J, Chang SC, Marjanovic J, Majerus PW. MTMR9 increases MTMR6 enzyme activity, stability, and role in apoptosis. J Biol Chem 2009, 284: 2064–2071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang L, Yue N, Zhu X, Han Q, Liu Q, Yu J, et al. Electroacupuncture upregulates ERK signaling pathways and promotes adult hippocampal neural progenitors proliferation in a rat model of depression. BMC Complement Altern Med 2013, 13: 288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang Y, Liu W, Zhou Y, Ma C, Li S, Cong B. Endoplasmic reticulum stress is involved in restraint stress-induced hippocampal apoptosis and cognitive impairments in rats. Physiol Behav 2014, 131: 41–48.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang JQ, Wu XH, Feng Y, Xie XF, Fan YH, Yan S, et al. Salvianolic acid B ameliorates depressive-like behaviors in chronic mild stress-treated mice: involvement of the neuroinflammatory pathway. Acta Pharmacol Sin 2016, 37: 1141–1153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gellen B, Volgyi K, Gyorffy BA, Balogh B, Darula Z, Hunyadi-Gulyas E, et al. Proteomic investigation of the prefrontal cortex in the rat clomipramine model of depression. J Proteomics 2016, 153: 53–64.

    Article  PubMed  Google Scholar 

  58. Martins-de-Souza D, Guest PC, Harris LW, Vanattou-Saifoudine N, Webster MJ, Rahmoune H, et al. Identification of proteomic signatures associated with depression and psychotic depression in post-mortem brains from major depression patients. Transl Psychiatry 2012, 2: e87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cox DA, Gottschalk MG, Stelzhammer V, Wesseling H, Cooper JD, Bahn S. Evaluation of molecular brain changes associated with environmental stress in rodent models compared to human major depressive disorder: A proteomic systems approach. World J Biol Psychiatry 2016: 1–12.

Download references

Acknowledgements

We thank Dr. Sheng-Yuan Yu at the Department of Neurology, Chinese PLA General Hospital for help with CION surgery. This work was supported by the National Natural Science Foundation of China (31421091, 81471130, 31371123 and 31420103903) and a Development Project of Shanghai Peak Disciplines Integrated Chinese and Western Medicine, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Cao or Yu-Qiu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, QH., Tong, QH., Lu, N. et al. Proteomic Analysis of the Hippocampus in Mouse Models of Trigeminal Neuralgia and Inescapable Shock-Induced Depression. Neurosci. Bull. 34, 74–84 (2018). https://doi.org/10.1007/s12264-017-0131-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-017-0131-4

Keywords

Navigation