Skip to main content
Log in

Overexpression of Tau Rescues Nogo-66-Induced Neurite Outgrowth Inhibition In Vitro

  • Report
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Nogo-66 plays a central role in the myelin-mediated inhibition of neurite outgrowth. Tau is a microtubule-associated protein involved in microtubule assembly and stabilization. It remains unverified whether tau interacts directly with growth factor receptors, or engages in cross-talk with regeneration inhibitors like Nogo-66. Here, we report that plasmid overexpression of tau significantly elevated the protein levels of total tau, phosphorylated tau, and microtubule-affinity regulating kinase (MARK). Nogo-66 transiently elevated the total tau protein level and persistently reduced the level of p-S262 tau (tau phosphorylated at serine 262), whereas it had little influence on the level of p-T205 tau (tau phosphorylated at threonine 205). Nogo-66 significantly decreased the protein level of MARK. Hymenialdisine, an inhibitor of MARK, significantly reduced the level of p-S262 tau. Overexpression of tau rescued the Nogo-66-induced inhibition of neurite outgrowth in neuroblastoma 2a (N2a) cells and primary cortical neurons. However, concomitant inhibition of MARK abolished the rescue of neurite outgrowth by tau in N2a cells. We conclude that dephosphorylation of tau at S262 is able to regulate Nogo-66 signaling, and that overexpression of tau can rescue the Nogo-66-induced inhibition of neurite outgrowth in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Geoffroy CG, Zheng B. Myelin-associated inhibitors in axonal growth after CNS injury. Curr Opin Neurobiol 2014, 27: 31–38.

    Article  CAS  PubMed  Google Scholar 

  2. Fournier AE, GrandPre T, Strittmatter SM. Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 2001, 409: 341–346.

    Article  CAS  PubMed  Google Scholar 

  3. GrandPre T, Li S, Strittmatter SM. Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature 2002, 417: 547–551.

    Article  CAS  PubMed  Google Scholar 

  4. Dawson HN, Ferreira A, Eyster MV, Ghoshal N, Binder LI, Vitek MP. Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice. J Cell Sci 2001, 114: 1179–1187.

    CAS  PubMed  Google Scholar 

  5. Zhang SX, Duan LH, Qian H, Yu X. Actin aggregations mark the sites of neurite initiation. Neurosci Bull 2016, 32: 1–15.

    Article  PubMed  Google Scholar 

  6. Liu G, Dwyer T. Microtubule dynamics in axon guidance. Neurosci Bull 2014, 30: 569–583.

    Article  PubMed  Google Scholar 

  7. Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW. A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A 1975, 72: 1858–1862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Feinstein SC, Wilson L. Inability of tau to properly regulate neuronal microtubule dynamics: A loss-of-function mechanism by which tau might mediate neuronal cell death. Biochim Biophys Acta 2005, 1739: 268–279.

    Article  CAS  PubMed  Google Scholar 

  9. Mandelkow EM, Mandelkow E. Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2012, 2: a6247.

    Article  Google Scholar 

  10. Beharry C, Cohen LS, Di J, Ibrahim K, Briffa-Mirabella S, Alonso AC. Tau-induced neurodegeneration: Mechanisms and targets. Neurosci Bull 2014, 30: 346–358.

    Article  CAS  PubMed  Google Scholar 

  11. Min SW, Chen X, Tracy TE, Li Y, Zhou Y, Wang C, et al. Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat Med 2015, 21: 1154–1162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gratuze M, Cisbani G, Cicchetti F, Planel E. Is Huntington’s disease a tauopathy? Brain 2016, 139: 1014–1025.

    Article  PubMed  Google Scholar 

  13. Plemel JR, Manesh SB, Sparling JS, Tetzlaff W. Myelin inhibits oligodendroglial maturation and regulates oligodendrocytic transcription factor expression. Glia 2013, 61: 1471–1487.

    Article  PubMed  Google Scholar 

  14. McKerracher L, Rosen KM. MAG, myelin and overcoming growth inhibition in the CNS. Front Mol Neurosci 2015, 8: 51.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sandvig A, Berry M, Barrett LB, Butt A, Logan A. Myelin-, reactive glia-, and scar-derived CNS axon growth inhibitors: Expression, receptor signaling, and correlation with axon regeneration. Glia 2004, 46: 225–251.

    Article  PubMed  Google Scholar 

  16. Yu JZ, Rasenick MM. Tau associates with actin in differentiating PC12 cells. Faseb J 2006, 20: 1452–1461.

    Article  CAS  PubMed  Google Scholar 

  17. Drewes G, Ebneth A, Preuss U, Mandelkow EM, Mandelkow E. MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell 1997, 89: 297–308.

    Article  CAS  PubMed  Google Scholar 

  18. Marx A, Nugoor C, Panneerselvam S, Mandelkow E. Structure and function of polarity-inducing kinase family MARK/Par-1 within the branch of AMPK/Snf1-related kinases. Faseb J 2010, 24: 1637–1648.

    Article  CAS  PubMed  Google Scholar 

  19. Hernandez F, Gomez DBE, Fuster-Matanzo A, Lucas JJ, Avila J. GSK3: A possible link between beta amyloid peptide and tau protein. Exp Neurol 2010, 223: 322–325.

    Article  CAS  PubMed  Google Scholar 

  20. Li HL, Wang HH, Liu SJ, Deng YQ, Zhang YJ, Tian Q, et al. Phosphorylation of tau antagonizes apoptosis by stabilizing beta-catenin, a mechanism involved in Alzheimer’s neurodegeneration. Proc Natl Acad Sci U S A 2007, 104: 3591–3596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shen JY, Yi XX, Xiong NX, Wang HJ, Duan XW, Zhao HY. GSK-3beta activation mediates Nogo-66-induced inhibition of neurite outgrowth in N2a cells. Neurosci Lett 2011, 505: 165–170.

    Article  CAS  PubMed  Google Scholar 

  22. Niewiadomska G, Baksalerska-Pazera M, Riedel G. Altered cellular distribution of phospho-tau proteins coincides with impaired retrograde axonal transport in neurons of aged rats. Ann N Y Acad Sci 2005, 1048: 287–295.

    Article  CAS  PubMed  Google Scholar 

  23. Niewiadomska G, Baksalerska-Pazera M, Lenarcik I, Riedel G. Compartmental protein expression of Tau, GSK-3beta and TrkA in cholinergic neurons of aged rats. J Neural Transm (Vienna) 2006, 113: 1733–1746.

    Article  CAS  Google Scholar 

  24. Schwab ME, Strittmatter SM. Nogo limits neural plasticity and recovery from injury. Curr Opin Neurobiol 2014, 27: 53–60.

    Article  CAS  PubMed  Google Scholar 

  25. Knops J, Kosik KS, Lee G, Pardee JD, Cohen-Gould L, McConlogue L. Overexpression of tau in a nonneuronal cell induces long cellular processes. J Cell Biol 1991, 114: 725–733.

    Article  CAS  PubMed  Google Scholar 

  26. Wang Y, Mandelkow E. Tau in physiology and pathology. Nat Rev Neurosci 2016, 17: 22–35.

    Article  CAS  Google Scholar 

  27. Harada A, Oguchi K, Okabe S, Kuno J, Terada S, Ohshima T, et al. Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature 1994, 369: 488–491.

    Article  CAS  PubMed  Google Scholar 

  28. Mietelska-Porowska A, Wasik U, Goras M, Filipek A, Niewiadomska G. Tau protein modifications and interactions: Their role in function and dysfunction. Int J Mol Sci 2014, 15: 4671–4713.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hanger DP, Anderton BH, Noble W. Tau phosphorylation: The therapeutic challenge for neurodegenerative disease. Trends Mol Med 2009, 15: 112–119.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81371380 and 31171028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nan-Xiang Xiong or Hong-Yang Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, YC., Li, HL., Xiong, NX. et al. Overexpression of Tau Rescues Nogo-66-Induced Neurite Outgrowth Inhibition In Vitro . Neurosci. Bull. 32, 577–584 (2016). https://doi.org/10.1007/s12264-016-0068-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-016-0068-z

Keywords

Navigation