Skip to main content
Log in

Autophagy in synaptic development, function, and pathology

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

In the nervous system, neurons contact each other to form neuronal circuits and drive behavior, relying heavily on synaptic connections. The proper development and growth of synapses allows functional transmission of electrical information between neurons or between neurons and muscle fibers. Defects in synapse-formation or development lead to many diseases. Autophagy, a major determinant of protein turnover, is an essential process that takes place in developing synapses. During the induction of autophagy, proteins and cytoplasmic components are encapsulated in autophagosomes, which fuse with lysosomes to form autolysosomes. The cargoes are subsequently degraded and recycled. However, aberrant autophagic activity may lead to synaptic dysfunction, which is a common pathological characteristic in several disorders. Here, we review the current understanding of autophagy in regulating synaptic development and function. In addition, autophagy-related synaptic dysfunction in human diseases is also summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maday S, Holzbaur EL. Autophagosome biogenesis in primary neurons follows an ordered and spatially regulated pathway. Dev Cell 2014, 30: 71–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Yang Y, Feng LQ, Zheng XX. Microtubule and kinesin/ dynein-dependent, bi-directional transport of autolysosomes in neurites of PC12 cells. Int J Biochem Cell Biol 2011, 43: 1147–1156.

    Article  CAS  PubMed  Google Scholar 

  3. Maday S, Wallace KE, Holzbaur EL. Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J Cell Biol 2012, 196: 407–417.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Fu MM, Nirschl JJ, Holzbaur EL. LC3 binding to the scaffolding protein JIP1 regulates processive dynein-driven transport of autophagosomes. Dev Cell 2014, 29: 577–590.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Yang Y, Coleman M, Zhang L, Zheng X, Yue Z. Autophagy in axonal and dendritic degeneration. Trends Neurosci 2013, 36: 418–428.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Choquet D, Triller A. The dynamic synapse. Neuron 2013, 80: 691–703.

    Article  CAS  PubMed  Google Scholar 

  7. Son JH, Shim JH, Kim KH, Ha JY, Han JY. Neuronal autophagy and neurodegenerative diseases. Exp Mol Med 2012, 44: 89–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Cline HT. Dendritic arbor development and synaptogenesis. Curr Opin Neurobiol 2001, 11: 118–126.

    Article  CAS  PubMed  Google Scholar 

  9. Hua JY, Smith SJ. Neural activity and the dynamics of central nervous system development. Nat Neurosci 2004, 7: 327–332.

    Article  CAS  PubMed  Google Scholar 

  10. Park M, Watanabe S, Poon VY, Ou CY, Jorgensen EM, Shen K. CYY-1/cyclin Y and CDK-5 differentially regulate synapse elimination and formation for rewiring neural circuits. Neuron 2011, 70: 742–757.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Caroni P, Donato F, Muller D. Structural plasticity upon learning: regulation and functions. Nat Rev Neurosci 2012, 13: 478–490.

    Article  CAS  PubMed  Google Scholar 

  12. Robichaux MA, Cowan CW. Signaling mechanisms of axon guidance and early synaptogenesis. Curr Top Behav Neurosci 2014, 16: 19–48.

    Article  PubMed  Google Scholar 

  13. Ehlers MD. Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat Neurosci 2003, 6: 231–242.

    Article  CAS  PubMed  Google Scholar 

  14. Speese SD, Trotta N, Rodesch CK, Aravamudan B, Broadie K. The ubiquitin proteasome system acutely regulates presynaptic protein turnover and synaptic efficacy. Curr Biol 2003, 13: 899–910.

    Article  CAS  PubMed  Google Scholar 

  15. Chen PC, Bhattacharyya BJ, Hanna J, Minkel H, Wilson JA, Finley D, et al. Ubiquitin homeostasis is critical for synaptic development and function. J Neurosci 2011, 31: 17505–17513.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Korhonen L, Lindholm D. The ubiquitin proteasome system in synaptic and axonal degeneration: a new twist to an old cycle. J Cell Biol 2004, 165: 27–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. DiAntonio A, Haghighi AP, Portman SL, Lee JD, Amaranto AM, Goodman CS. Ubiquitination-dependent mechanisms regulate synaptic growth and function. Nature 2001, 412: 449–452.

    Article  CAS  PubMed  Google Scholar 

  18. Wan HI, Di Antonio A, Fetter RD, Bergstrom K, Strauss R, Goodman CS. Highwire regulates synaptic growth in Drosophila. Neuron 2000, 26: 313–329.

    Article  CAS  PubMed  Google Scholar 

  19. McCabe BD, Hom S, Aberle H, Fetter RD, Marques G, Haerry TE, et al. Highwire regulates presynaptic BMP signaling essential for synaptic growth. Neuron 2004, 41: 891–905.

    Article  CAS  PubMed  Google Scholar 

  20. Morgado AL, Xavier JM, Dionisio PA, Ribeiro MF, Dias RB, Sebastiao AM, et al. MicroRNA-34a Modulates Neural Stem Cell Differentiation by Regulating Expression of Synaptic and Autophagic Proteins. Mol Neurobiol 2014.

    Google Scholar 

  21. Petralia RS, Schwartz CM, Wang YX, Kawamoto EM, Mattson MP, Yao PJ. Sonic hedgehog promotes autophagy in hippocampal neurons. Biol Open 2013, 2: 499–504.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Shen W, Ganetzky B. Autophagy promotes synapse development in Drosophila. J Cell Biol 2009, 187: 71–79.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Batlevi Y, Martin DN, Pandey UB, Simon CR, Powers CM, Taylor JP, et al. Dynein light chain 1 is required for autophagy, protein clearance, and cell death in Drosophila. Proc Natl Acad Sci U S A 2010, 107: 742–747.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Tian X, Li J, Valakh V, DiAntonio A, Wu C. Drosophila Rae1 controls the abundance of the ubiquitin ligase Highwire in post-mitotic neurons. Nat Neurosci 2011, 14: 1267–1275.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Milton VJ, Sweeney ST. Oxidative stress in synapse development and function. Dev Neurobiol 2012, 72: 100–110.

    Article  CAS  PubMed  Google Scholar 

  26. Wairkar YP, Toda H, Mochizuki H, Furukubo-Tokunaga K, Tomoda T, Diantonio A. Unc-51 controls active zone density and protein composition by downregulating ERK signaling. J Neurosci 2009, 29: 517–528.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Wu H, Wang MC, Bohmann D. JNK protects Drosophila from oxidative stress by trancriptionally activating autophagy. Mech Dev 2009, 126: 624–637.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Milton VJ, Jarrett HE, Gowers K, Chalak S, Briggs L, Robinson IM, et al. Oxidative stress induces overgrowth of the Drosophila neuromuscular junction. Proc Natl Acad Sci U S A 2011, 108: 17521–17526.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Waites CL, Craig AM, Garner CC. Mechanisms of vertebrate synaptogenesis. Annu Rev Neurosci 2005, 28: 251–274.

    Article  CAS  PubMed  Google Scholar 

  30. Orefice LL, Waterhouse EG, Partridge JG, Lalchandani RR, Vicini S, Xu B. Distinct roles for somatically and dendritically synthesized brain-derived neurotrophic factor in morphogenesis of dendritic spines. J Neurosci 2013, 33: 11618–11632.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Ko J, Soler-Llavina GJ, Fuccillo MV, Malenka RC, Sudhof TC. Neuroligins/LRRTMs prevent activity- and Ca2+/calmodulindependent synapse elimination in cultured neurons. J Cell Biol 2011, 194: 323–334.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Tang G, Gudsnuk K, Kuo SH, Cotrina ML, Rosoklija G, Sosunov A, et al. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 2014, 83: 1131–1143.

    Article  CAS  PubMed  Google Scholar 

  33. Bowling H, Klann E. Shaping dendritic spines in autism spectrum disorder: mTORC1-dependent macroautophagy. Neuron 2014, 83: 994–996.

    Article  CAS  PubMed  Google Scholar 

  34. Chua CE, Gan BQ, Tang BL. Involvement of members of the Rab family and related small GTPases in autophagosome formation and maturation. Cell Mol Life Sci 2011, 68: 3349–3358.

    Article  CAS  PubMed  Google Scholar 

  35. Binotti B, Pavlos NJ, Riedel D, Wenzel D, Vorbruggen G, Schalk AM, et al. The GTPase Rab26 links synaptic vesicles to the autophagy pathway. eLife 2015, 4.

  36. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev 2004, 18: 1926–1945.

    Article  CAS  PubMed  Google Scholar 

  37. Dobashi Y, Watanabe Y, Miwa C, Suzuki S, Koyama S. Mammalian target of rapamycin: a central node of complex signaling cascades. Int J Clin Exp Pathol 2011, 4: 476–495.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011, 13: 132–141.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Liu-Yesucevitz L, Bassell GJ, Gitler AD, Hart AC, Klann E, Richter JD, et al. Local RNA translation at the synapse and in disease. J Neurosci 2011, 31: 16086–16093.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Hernandez D, Torres CA, Setlik W, Cebrian C, Mosharov EV, Tang G, et al. Regulation of presynaptic neurotransmission by macroautophagy. Neuron 2012, 74: 277–284.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Weston MC, Chen H, Swann JW. Multiple roles for mammalian target of rapamycin signaling in both glutamatergic and GABAergic synaptic transmission. J Neurosci 2012, 32: 11441–11452.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Lyu D, Yu W, Tang N, Wang R, Zhao Z, Xie F, et al. The mTOR signaling pathway regulates pain-related synaptic plasticity in rat entorhinal-hippocampal pathways. Mol Pain 2013, 9: 64.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Torres CA, Sulzer D. Macroautophagy can press a brake on presynaptic neurotransmission. Autophagy 2012, 8: 1540–1541.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Friend DM, Fricks-Gleason AN, Keefe KA. Is there a role for nitric oxide in methamphetamine-induced dopamine terminal degeneration? Neurotox Res 2014, 25: 153–160.

    Article  CAS  PubMed  Google Scholar 

  45. Larsen KE, Fon EA, Hastings TG, Edwards RH, Sulzer D. Methamphetamine-induced degeneration of dopaminergic neurons involves autophagy and upregulation of dopamine synthesis. J Neurosci 2002, 22: 8951–8960.

    CAS  PubMed  Google Scholar 

  46. Farrant M, Kaila K. The cellular, molecular and ionic basis of GABA(A) receptor signalling. Prog Brain Res 2007, 160: 59–87.

    Article  CAS  PubMed  Google Scholar 

  47. Farrant M, Nusser Z. Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci 2005, 6: 215–229.

    Article  CAS  PubMed  Google Scholar 

  48. Brickley SG, Mody I. Extrasynaptic GABA(A) receptors: their function in the CNS and implications for disease. Neuron 2012, 73: 23–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Rowland AM, Richmond JE, Olsen JG, Hall DH, Bamber BA. Presynaptic terminals independently regulate synaptic clustering and autophagy of GABAA receptors in Caenorhabditis elegans. J Neurosci 2006, 26: 1711–1720.

    Article  CAS  PubMed  Google Scholar 

  50. Bamber BA, Richmond JE, Otto JF, Jorgensen EM. The composition of the GABA receptor at the Caenorhabditis elegans neuromuscular junction. Br J Pharmacol 2005, 144: 502–509.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Miller PS, Aricescu AR. Crystal structure of a human GABAA receptor. Nature 2014, 512: 270–275.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Shehata M, Matsumura H, Okubo-Suzuki R, Ohkawa N, Inokuchi K. Neuronal stimulation induces autophagy in hippocampal neurons that is involved in AMPA receptor degradation after chemical long-term depression. J Neurosci 2012, 32: 10413–10422.

    Article  CAS  PubMed  Google Scholar 

  53. Khan MM, Strack S, Wild F, Hanashima A, Gasch A, Brohm K, et al. Role of autophagy, SQSTM1, SH3GLB1, and TRIM63 in the turnover of nicotinic acetylcholine receptors. Autophagy 2014, 10: 123–136.

    Article  CAS  PubMed  Google Scholar 

  54. Haberman A, Williamson WR, Epstein D, Wang D, Rina S, Meinertzhagen IA, et al. The synaptic vesicle SNARE neuronal Synaptobrevin promotes endolysosomal degradation and prevents neurodegeneration. J Cell Biol 2012, 196: 261–276.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Ilardi JM, Mochida S, Sheng ZH. Snapin: a SNAREassociated protein implicated in synaptic transmission. Nat Neurosci 1999, 2: 119–124.

    Article  CAS  PubMed  Google Scholar 

  56. Dickman DK, Tong A, Davis GW. Snapin is critical for presynaptic homeostatic plasticity. J Neurosci 2012, 32: 8716–8724.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Cai Q, Lu L, Tian JH, Zhu YB, Qiao H, Sheng ZH. Snapinregulated late endosomal transport is critical for efficient autophagy-lysosomal function in neurons. Neuron 2010, 68: 73–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Kamat PK, Kalani A, Rai S, Swarnkar S, Tota S, Nath C, et al. Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer's disease: understanding the therapeutics strategies. Mol Neurobiol 2014.

    Google Scholar 

  59. Nava-Mesa MO, Jimenez-Diaz L, Yajeya J, Navarro-Lopez JD. GABAergic neurotransmission and new strategies of neuromodulation to compensate synaptic dysfunction in early stages of Alzheimer's disease. Front Cell Neurosci 2014, 8: 167.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Hunn BH, Cragg SJ, Bolam JP, Spillantini MG, Wade-Martins R. Impaired intracellular trafficking defines early Parkinson's disease. Trends Neurosci 2015, 38:178–88.

    Article  CAS  PubMed  Google Scholar 

  61. Picconi B, Piccoli G, Calabresi P. Synaptic dysfunction in Parkinson's disease. Adv Exp Med Biol 2012, 970: 553–572.

    Article  CAS  PubMed  Google Scholar 

  62. Won H, Mah W, Kim E. Autism spectrum disorder causes, mechanisms, and treatments: focus on neuronal synapses. Front Mol Neurosci 2013, 6: 19.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Hutsler JJ, Zhang H. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res 2010, 1309: 83–94.

    Article  CAS  PubMed  Google Scholar 

  64. Dere E, Dahm L, Lu D, Hammerschmidt K, Ju A, Tantra M, et al. Heterozygous ambra1 deficiency in mice: a genetic trait with autism-like behavior restricted to the female gender. Front Behav Neurosci 2014, 8: 181.

    PubMed Central  PubMed  Google Scholar 

  65. Sontag EM, Vonk WI, Frydman J. Sorting out the trash: the spatial nature of eukaryotic protein quality control. Curr Opin Cell Biol 2014, 26: 139–146.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. LaFerla FM, Oddo S. Alzheimer's disease: Abeta, tau and synaptic dysfunction. Trends Mol Med 2005, 11: 170–176.

    Article  CAS  PubMed  Google Scholar 

  67. Morrison JH, Baxter MG. Synaptic health. JAMA Psychiatry 2014, 71: 835–837.

    Article  PubMed  Google Scholar 

  68. Sanchez-Varo R, Trujillo-Estrada L, Sanchez-Mejias E, Torres M, Baglietto- Vargas D, Moreno- Gonzalez I, et al. Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer's mice hippocampus. Acta Neuropathol 2012, 123: 53–70.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Chen Y, Wei G, Nie H, Lin Y, Tian H, Liu Y, et al. beta- Asarone prevents autophagy and synaptic loss by reducing ROCK expression in asenescence-accelerated prone 8 mice. Brain Res 2014, 1552: 41–54.

    Article  CAS  PubMed  Google Scholar 

  70. Yang Y, Chen S, Zhang J, Li C, Sun Y, Zhang L, et al. Stimulation of autophagy prevents amyloid-beta peptideinduced neuritic degeneration in PC12 cells. J Alzheimers Dis 2014, 40: 929–939.

    CAS  PubMed  Google Scholar 

  71. Luccarini I, Grossi C, Rigacci S, Coppi E, Pugliese AM, Pantano D, et al. Oleuropein aglycone protects against pyroglutamylated-3 amyloid-ss toxicity: biochemical, epigenetic and functional correlates. Neurobiol Aging 2015, 36: 648–663.

    Article  CAS  PubMed  Google Scholar 

  72. Moore DJ, West AB, Dawson VL, Dawson TM. Molecular pathophysiology of Parkinson's disease. Annu Rev Neurosci 2005, 28: 57–87.

    Article  CAS  PubMed  Google Scholar 

  73. Recasens A, Dehay B. Alpha-synuclein spreading in Parkinson's disease. Front Neuroanat 2014, 8: 159.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 2004, 305: 1292–1295.

    Article  CAS  PubMed  Google Scholar 

  75. Mak SK, McCormack AL, Manning-Bog AB, Cuervo AM, DiMonte DA. Lysosomal degradation of alpha-synuclein in vivo. J Biol Chem 2010, 285: 13621–13629.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Zhang H, Duan C, Yang H. Defective autophagy in Parkinson's disease: lessons from genetics. Mol Neurobiol 2015, 51: 89–104.

    Article  CAS  PubMed  Google Scholar 

  77. Vekrellis K, Xilouri M, Emmanouilidou E, Rideout HJ, Stefanis L. Pathological roles of alpha-synuclein in neurological disorders. Lancet Neurol 2011, 10: 1015–1025.

    Article  CAS  PubMed  Google Scholar 

  78. Friedman LG, Lachenmayer ML, Wang J, He L, Poulose SM, Komatsu M, et al. Disrupted autophagy leads to dopaminergic axon and dendrite degeneration and promotes presynaptic accumulation of alpha-synuclein and LRRK2 in the brain. J Neurosci 2012, 32: 7585–7593.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Beccano-Kelly DA, Kuhlmann N, Tatarnikov I, Volta M, Munsie LN, Chou P, et al. Synaptic function is modulated by LRRK2 and glutamate release is increased in cortical neurons of G2019S LRRK2 knock-in mice. Front Cell Neurosci 2014, 8: 301.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Hanson JE, Orr AL, Madison DV. Altered hippocampal synaptic physiology in aged parkin-deficient mice. Neuromolecular Med 2010, 12: 270–276.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Plowey ED, Chu CT. Synaptic dysfunction in genetic models of Parkinson's disease: a role for autophagy? Neurobiol Dis 2011, 43: 60–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Zhu JY, Vereshchagina N, Sreekumar V, Burbulla LF, Costa AC, Daub KJ, et al. Knockdown of Hsc70-5/mortalin induces loss of synaptic mitochondria in a Drosophila Parkinson's disease model. PLoS One 2013, 8: e83714.

    Article  PubMed Central  PubMed  Google Scholar 

  83. van der Zee EA. Synapses, spines and kinases in mammalian learning and memory, and the impact of aging. Neuroscience and biobehavioral reviews 2015, 50: 77–85.

    Article  PubMed  Google Scholar 

  84. He LQ, Lu JH, Yue ZY. Autophagy in ageing and ageingassociated diseases. Acta pharmacologica Sinica 2013, 34: 605–611.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Beramendi A, Peron S, Casanova G, Reggiani C, Cantera R. Neuromuscular junction in abdominal muscles of Drosophila melanogaster during adulthood and aging. J Comp Neurol 2007, 501: 498–508.

    Article  PubMed  Google Scholar 

  86. Carnio S, LoVerso F, Baraibar MA, Longa E, Khan MM, Maffei M, et al. Autophagy impairment in muscle induces neuromuscular junction degeneration and precocious aging. Cell Rep 2014, 8: 1509–1521.

    Article  CAS  PubMed  Google Scholar 

  87. Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 2009, 7: 65–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Accardi MV, Daniels BA, Brown PM, Fritschy JM, Tyagarajan SK, Bowie D. Mitochondrial reactive oxygen species regulate the strength of inhibitory GABA-mediated synaptic transmission. Nat Commun 2014, 5: 3168.

    Article  PubMed  Google Scholar 

  89. Ruan YW, Han XJ, Shi ZS, Lei ZG, Xu ZC. Remodeling of synapses in the CA1 area of the hippocampus after transient global ischemia. Neuroscience 2012, 218: 268–277.

    Article  CAS  PubMed  Google Scholar 

  90. Otabe H, Nibuya M, Shimazaki K, Toda H, Suzuki G, Nomura S, et al. Electroconvulsive seizures enhance autophagy signaling in rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 2014, 50: 37–43.

    Article  PubMed  Google Scholar 

  91. Chen L, Miao Y, Jin P, Zha Y, Chai Y, Zheng F, et al. The role of elevated autophagy on the synaptic plasticity impairment caused by CdSe/ZnS quantum dots. Biomaterials 2013, 34: 10172–10181.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Hui Zhang or Yi Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, DN., Zhang, LH., Wei, EQ. et al. Autophagy in synaptic development, function, and pathology. Neurosci. Bull. 31, 416–426 (2015). https://doi.org/10.1007/s12264-015-1536-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-015-1536-6

Keywords

Navigation