Skip to main content
Log in

p53-mediated neuronal cell death in ischemic brain injury

p53介导缺血性脑损伤的神经元死亡

Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

p53 is a key modulator of cellular stress responses. It is activated in the ischemic areas of brain, and contributes to neuronal apoptosis. In various stroke models, p53 deficiency or applications of p53 inhibitors can significantly attenuate brain damage. p53-mediated neuronal apoptosis occurs through various molecular mechanisms. The transcriptional pathway is an important mechanism through which p53 induces neuronal apoptosis by up-regulating the expression of its target gene p21WAF, Peg3/Pw1 or p53-up-regulated modulator of apoptosis (PUMA). In addition, p53 disrupts NF-κB binding to p300 and blocks NF-κB-mediated survival signaling. On the other hand, the transcription-independent pathway mechanism is also of great importance. In this pathway, p53 is translocated to mitochondrial and mediates the release of cytochrome c. In both pathways, p53 seems to play a key role in post-ischemic brain damage and has become a therapeutic target against stroke pathology.

摘要

p53是调节细胞应激反应的关键因子。 脑缺血激活p53, 后者导致神经元凋亡。 对于多种动物中风模型的研究均表明, p53缺陷或p53抑制剂均能显著减轻脑损伤。 p53介导神经元凋亡的机制主要有两种, 包括转录依赖和转录非依赖途径。 在转录依赖途径中, p53通过上调其靶基因p21WAF, Peg3/Pw1或PUMA(受p53基因上调表达的凋亡调控基因)诱导神经元凋亡。 此外, p53还干预NF-κB与胸苷激酶p300的结合, 进而阻断NF-κB介导的生存信号。 在转录非依赖途径中, p53进入线粒体并介导细胞色素C的释放。 因此, p53有可能在缺血后脑损伤过程中起关键作用, 并有望成为脑中风药物治疗的靶点。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Herrmann O, Baumann B, De Lorenzi R, Muhammad S, Zhang W, Kleesiek J, et al. IKK mediates ischemia-induced neuronal death. Nat Med 2005, 11: 1322–1329.

    Article  CAS  PubMed  Google Scholar 

  2. Harms K, Nozell S, Chen X. The common and distinct target genes of the p53 family transcription factors. Cell Mol Life Sci 2004, 61: 822–842.

    Article  CAS  PubMed  Google Scholar 

  3. Harris SL, Levine AJ. The p53 pathway: positive and negative feed back loops. Oncogene 2005, 24: 2899–2908.

    Article  CAS  PubMed  Google Scholar 

  4. Mashima T, Tsuruo T. Defects of the apoptotic pathway as therapeutic target against cancer. Drug Resist Updat 2005, 8: 339–343.

    Article  CAS  PubMed  Google Scholar 

  5. Green DR, Chipuk JE. p53 and metabolism: inside the TIGAR. Cell 2006, 126: 30–32.

    Article  CAS  PubMed  Google Scholar 

  6. Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995, 80: 293–299.

    Article  CAS  PubMed  Google Scholar 

  7. Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 2000a, 288: 1053–1058.

    Article  CAS  PubMed  Google Scholar 

  8. Oda K, Arakawa H, Tanaka T, Matsuda K, Tanikawa C, Mori T, et al. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 2000b, 102: 849–862

    Article  CAS  PubMed  Google Scholar 

  9. Nakano K, Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 2001, 7: 683–694.

    Article  CAS  PubMed  Google Scholar 

  10. Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell 2001, 7: 673–682.

    Article  CAS  PubMed  Google Scholar 

  11. Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 2004, 303: 1010–1014.

    Article  CAS  PubMed  Google Scholar 

  12. Marchenko ND, Zaika A, Moll UM. Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem 2000, 275: 16202–16212.

    Article  CAS  PubMed  Google Scholar 

  13. Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, et al. p53 has a direct apoptogenic role at the mitochondria. Mol Cell 2003, 11: 577–590.

    Article  CAS  PubMed  Google Scholar 

  14. Erster S, Mihara M, Kim RH, Petrenko O, Moll UM. In vivo mitochondrial p53 translocation triggers a rapid first wave of cell death in response to DNA damage that can precede p53 target gene activation. Mol Cell Biol 2004, 24: 6728–6741.

    Article  CAS  PubMed  Google Scholar 

  15. Toledo F, Wahl GM. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 2006, 6: 909–923.

    Article  CAS  PubMed  Google Scholar 

  16. Murray-Zmijewski F, Lane DP, Bourdon JC. P53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ 2006, 13: 962–972.

    Article  CAS  PubMed  Google Scholar 

  17. Crumrine R, Thomas A, Morgan P. Attenuation of p53 expression protects against focal ischemic damage in transgenic mice. J Cereb Blood Flow Metab 1994, 14: 887–891.

    CAS  PubMed  Google Scholar 

  18. Li Y, Chopp M, Zhang ZG, Zaloga C, Niewenhuis L, Gautam S. p53-immunoreactive protein and p53 messenger RNA expression after transient middle cerebral artery occlusion in rats. Stroke 1994, 25: 849–856.

    CAS  PubMed  Google Scholar 

  19. McGahan L, Hakim AM, Robertson GS. Hippocampal myc and p53 expression following transient global ischemia. Mol Brain Res 1998, 56: 133–145.

    Article  CAS  PubMed  Google Scholar 

  20. Tomasevic G, Shamloo M, Israeli D, Wieloch T. Activation of p53 and its target genes p21 WAF1/Cip1 and PAG608/Wig-1 in ischemic preconditioning. Mol Brain Res 1999b, 70: 304–313.

    Article  CAS  PubMed  Google Scholar 

  21. Yamaguchi A, Taniguchi M, Hori O, Ogawa S, Tojo N, Matsuoka N, et al. Peg3/Pw1 is involved in p53-mediated cell death pathway in brain ischemia/hypoxia. J Biol Chem 2002, 277: 623–629.

    Article  CAS  PubMed  Google Scholar 

  22. Culmsee C, Siewe J, Junker V, Retiounskaia M, Schwarz S, Camandola S, et al. Reciprocal inhibition of p53 and nuclear factor-κB transcriptional activities determines cell survival or death in neurons. J Neurosci 2003, 23: 8586–8595.

    CAS  PubMed  Google Scholar 

  23. Saito A, Hayashi T, Okuno S, Nishi T, Chan PH. Modulation of p53 degradation via MDM2-mediated ubiquitylation and the ubiquitinproteasome system during reperfusion after stroke: role of oxidative stress. J Cereb Blood Flow Metab 2005, 25: 267–280.

    Article  CAS  PubMed  Google Scholar 

  24. Yonekura I, Takai K, Asai A, Kawahara N, Kirino T. p53 potentiates hippocampal neuronal death caused by global ischemia. J Cereb Blood Flow Metab 2006, 26: 1332–1340.

    Article  CAS  PubMed  Google Scholar 

  25. Endo H, Kamada H, Nito C, Nishi T, Chan PH. Mitochondrial translocation of p53 mediates release of cytochrome c and hippocampal CA1 neuronal death after transient global cerebral ischemia in rats. J Neurosci 2006, 26: 7974–7983.

    Article  CAS  PubMed  Google Scholar 

  26. Chen C, Hu Q, Yan J, Yang X, Shi X, Lei J, et al. Early inhibition of HIF-1 alpha with small interfering RNA reduces ischemic-reperfused brain injury in rats. Neurobiol Dis 2009, 33: 509–517.

    Article  CAS  PubMed  Google Scholar 

  27. Banasiak KJ, Haddad GG. Hypoxia-induced apoptosis: effect of hypoxic severity and role of p53 in neuronal cell death. Brain Res 1998, 797: 295–304.

    Article  CAS  PubMed  Google Scholar 

  28. Watanabe H, Ohta S, Kumon Y, Sakaki S, Sakanaka M. Increase in p53 protein expression following cortical infarction in the spontaneously hypertensive rat. Brain Res 1999, 837: 38–45.

    Article  CAS  PubMed  Google Scholar 

  29. van Lookeren Campagne M, Gill R. Increased expression of cyclin G1 and p21WAF1/CIP1 in neurons following transient forebrain ischemia: comparison with early DNA damage. J Neurosci Res 1998, 53: 279–296.

    Article  PubMed  Google Scholar 

  30. Cheng T, Liu D, Griffin JH, Fernandez JA, Castellino F, Rosen ED, et al. Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nat Med 2003, 9: 338–342.

    Article  CAS  PubMed  Google Scholar 

  31. Xiang H, Hochman DW, Saya H, Fujiwara T, Schwartzkroin PA, Morrison RS. Evidence for P53-mediated modulation of neuronal viability. J Neurosci 1996, 16: 6753–6765.

    CAS  PubMed  Google Scholar 

  32. Leker RR, Aharonowiz M, Greig NH, Ovadia H. The role of p53-induced apoptosis in cerebral ischemia: effects of the p53 inhibitor pifithrin α. Exp Neurol 2004, 187: 478–486.

    Article  CAS  PubMed  Google Scholar 

  33. Wadgaonkar R, Phelps KM, Haque Z, Williams AJ, Silverman ES, Collins T. CREB-binding protein is a nuclear integrator of nuclear factor kappaB and p53 signaling. J Biol Chem 1999, 274: 1879–1882.

    Article  CAS  PubMed  Google Scholar 

  34. Webster GA, Perkins ND. Transcriptional cross talk between NF-kappaB and p53. Mol Cell Biol 1999, 19: 3485–3495.

    CAS  PubMed  Google Scholar 

  35. Ikeda A, Sun X, Li Y, Zhang Y, Eckner R, Doi TS, et al. p300/CBP-dependent and -independent transcriptional interference between NF-kappaB RelA and p53. Biochem Biophys Res Commun 2000, 272: 375–379.

    Article  CAS  PubMed  Google Scholar 

  36. Mattson MP. Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 2000, 1: 120–129.

    Article  CAS  PubMed  Google Scholar 

  37. Bui TN, König HG, Culmsee C, Bauerbach E, Poppe M, Krieglstein J, et al. p75 neurotrophin receptor is required for constitutive and NGF-induced survival signaling in PC12 cells and rat hippocampal neurones. J Neurochem 2002, 81: 594–605.

    Article  CAS  PubMed  Google Scholar 

  38. Culmsee C, Gerling N, Lehmann M, Nikolova-Karakashian M, Prehn JH, Mattson MP, et al. Nerve growth factor survival signaling in cultured hippocampal neurons is mediated through TrkA and requires the common neurotrophin receptor P75. Neuroscience 2002, 115: 1089–1108.

    Article  CAS  PubMed  Google Scholar 

  39. Niizuma K, Endo H, Nito C, Myer DJ, Chan PH. Potential role of PUMA in delayed death of hippocampal CA1 neurons after transient global cerebral ischemia. Stroke 2009, 40: 618–625.

    Article  CAS  PubMed  Google Scholar 

  40. Grilli M, Memo M. Possible role of NF-kappaB and p53 in the glutamate-induced pro-apoptotic neuronal pathway. Cell Death Differ 1999, 6: 22–27.

    Article  CAS  PubMed  Google Scholar 

  41. Ryan KM, Ernst MK, Rice NR, Vousden KH. Role of NF-κB in p53-mediated programmed cell death. Nature 2000, 404: 892–897.

    Article  CAS  PubMed  Google Scholar 

  42. Uberti D, Grilli M, Memo M. Contribution of NF-kappaB and p53 in the glutamate-induced apoptosis. Int J Dev Neurosci 2000, 18: 447–454.

    Article  CAS  PubMed  Google Scholar 

  43. Cregan SP, Arbour NA, MacLaurin JG, Callaghan SM, Fortin A, Cheung ECC, et al. p53 activation domain 1 is essential for PUMA. J Neurosci 2004, 24: 10003–10012.

    Article  CAS  PubMed  Google Scholar 

  44. Chung YH, Shin CM, Kim MJ, Lee EY, Kim G, Cha CI. Enhanced expression of p53 in reactive astrocytes following transient focal ischemia. Neurol Res 2002, 24: 324–328.

    Article  CAS  PubMed  Google Scholar 

  45. Nijboer CH, Heijnen CJ, Groenendaal F, May MJ, van Bel F, Kavelaars A. A dual role of the NF-kappaB pathway in neonatal hypoxic-ischemic brain damage. Stroke 2008, 39: 2578–2586.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang XD, Wang Y, Wang Y, Zhang X, Han R, Wu JC, et al. p53 mediates mitochondria dysfunction-triggered autophagy activation and cell death in rat striatum. Autophagy 2009, 5: 339–350.

    Article  CAS  Google Scholar 

  47. Wang Y, Qin ZH, Nakai M, Chen RW, Chuang DM, Chase TN. Co-stimulation of cyclic-AMP-linked metabotropic glutamate receptors in rat striatum attenuates excitotoxin-induced nuclear factor-kappaB activation and apoptosis. Neuroscience 1999, 94: 1153–1162.

    Article  CAS  PubMed  Google Scholar 

  48. Qin ZH, Chen RW, Wang Y, Nakai M, Chuang DM, Chase TN. Nuclear factor kappaB nuclear translocation upregulates c-Myc and p53 expression during NMDA receptor-mediated apoptosis in rat striatum. J Neurosci 1999, 19: 4023–4033.

    CAS  PubMed  Google Scholar 

  49. Nakai M, Qin ZH, Chen JF, Wang Y, Chase TN. Kainic acidinduced apoptosis in rat striatum is associated with nuclear factor-kappaB activation. J Neurochem 2000, 74: 647–658.

    Article  CAS  PubMed  Google Scholar 

  50. Cao Y, Gu ZL, Lin F, Han R, Qin ZH. Caspase-1 inhibitor Ac-YVAD-CHO attenuates quinolinic acid-induced increases in p53 and apoptosis in rat striatum. Acta Pharmacol Sin 2005, 26: 150–154.

    Article  CAS  PubMed  Google Scholar 

  51. Liang ZQ, Wang XX, Wang Y, Chuang DM, DiFiglia M, Chase TN, et al. Susceptibility of striatal neurons to excitotoxic injury correlates with basal levels of Bcl-2 and the induction of P53 and c-Myc immunoreactivity. Neurobiol Dis 2005, 20: 562–573.

    Article  CAS  PubMed  Google Scholar 

  52. Liang ZQ, Li YL, Zhao XL, Han R, Wang XX, Wang Y, et al. NF-kappaB contributes to 6-hydroxydopamine-induced apoptosis of nigral dopaminergic neurons through p53. Brain Res 2007, 1145: 190–203.

    Article  CAS  PubMed  Google Scholar 

  53. Caelles C, Helmberg A, Karin M. p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature 1994, 370: 220–223.

    Article  CAS  PubMed  Google Scholar 

  54. Haupt Y, Rowan S, Shaulian E, Vousden KH, Oren M. Induction of apoptosis in HeLa cells by trans-activation-deficient p53. Genes Dev 1995, 9: 2170–2183.

    Article  CAS  PubMed  Google Scholar 

  55. Vaseva AV, Moll UM. The mitochondrial p53 pathway. Biochim Biophys Acta 2009, 1787: 414–420.

    Article  CAS  PubMed  Google Scholar 

  56. Ding HF, McGill G, Rowan S, Schmaltz C, Shimamura A, Fisher DE. Oncogene dependent regulation of caspase activation by p53 protein in a cell-free system. J Biol Chem 1998, 273: 28378–28383.

    Article  CAS  PubMed  Google Scholar 

  57. Gottlieb E, Oren M. p53 facilitates pRb cleavage in IL-3-deprived cells: novel proapoptotic activity of p53. EMBO J 1998, 17: 3587–3596.

    Article  CAS  PubMed  Google Scholar 

  58. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev 2007, 87: 99–163.

    Article  CAS  PubMed  Google Scholar 

  59. Endo H, Saito A, Chan PH. Mitochondrial translocation of p53 underlies the selective death of hippocampal CA1 neurons after global cerebral ischemia. Biochem Soc Trans 2006, 34: 1283–1286.

    Article  CAS  PubMed  Google Scholar 

  60. Bonini P, Cicconi S, Cardinale A, Vitale C, Serafino AL, Ciotti MT, et al. Oxidative stress induces p53-mediated apoptosis in glia: p53 transcription-independent way to die. J Neurosci Res 2004, 75: 83–95.

    Article  CAS  PubMed  Google Scholar 

  61. Racay P, Tatarkova Z, Drgova A, Kaplan P, Dobrota D. Effect of ischemic preconditioning on mitochondrial dysfunction and mitochondrial p53 translocation after transient global cerebral ischemia in rats. Neurochem Res 2007, 32: 1823–1832.

    Article  CAS  PubMed  Google Scholar 

  62. Vogelstein B, Lane DP, Levine AJ. Surfing the p53 network. Nature 2000, 408: 307–310.

    Article  CAS  PubMed  Google Scholar 

  63. Yang L, Tao LY, Chen XP. Roles of NF-kappaB in central nervous system damage and repair. Neurosci Bull 2007, 23: 307–313.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Ling Zhang  (张慧灵).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, LZ., Zhao, XY. & Zhang, HL. p53-mediated neuronal cell death in ischemic brain injury. Neurosci. Bull. 26, 232–240 (2010). https://doi.org/10.1007/s12264-010-1111-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-010-1111-0

Keywords

关键词

Navigation