Skip to main content
Log in

A Novel Strategy for the Microbial Removal of Heavy Metals: Cell-surface Display of Peptides

Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Cell surface engineering is a rapidly developing technology of microorganism that achieves modification of cell surface function by joining external functional peptides with surface anchoring proteins, for example, Outer Member Protein (OMP). On account of these proteins possessing metal responsive motifs, they can be specifically used for metal adsorption and dissociation. To elucidate the problems caused by heavy metals and develop various technologies for their removel or recovery, various metal-binding proteins/peptides fused on microorganism cell surface have been applied as novel methods. During the past few years, bacterial cell surface display strategy has received growing attention for their availability to eliminate heavy metals. In this paper, the existing problems, progress, and suggestions for furture of the peptide displaying system are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Park, D., Y. S. Yun, and J. M. Park (2010) The past, present, and future trends of biosorption. Biotechnol. Bioprocess Eng. 15: 86–102.

    Article  CAS  Google Scholar 

  2. Kumar, K. S., H. U. Dahms, E. J. Won, J. S. Lee, and K. H. Shin (2015) Microalgae — A promising tool for heavy metal remediation. Ecotoxicol. Environ. Saf. 113: 329–352.

    Article  Google Scholar 

  3. Wang, J. and C. Chen (2009) Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 27: 195–226.

    Article  PubMed  Google Scholar 

  4. Chasapis, C. T., A. C. Loutsidou, C. A. Spiliopoulou, and M. E. Stefanidou (2012) Zinc and human health: an update. Arch. Toxicol. 86: 521–534.

    Article  CAS  PubMed  Google Scholar 

  5. Batayneh, A. T. (2012) Toxic (aluminum, beryllium, boron, chromium and zinc) in groundwater: health risk assessment. Int. J. Environ. Sci. Technol. 9: 153–162.

    Article  CAS  Google Scholar 

  6. Kuroda, K. and M. Ueda (2010) Engineering of microorganisms towards recovery of rare metal ions. Appl Microbiol Biotechnol. 87: 53–60.

    Article  CAS  PubMed  Google Scholar 

  7. Khummongkol, D., G. S. Canterford, and C. Fryer (1982) Accumulation of heavy metals in unicellular algae. Biotechnol. Bioeng. 24: 2643–2660.

    Article  CAS  PubMed  Google Scholar 

  8. More, A. G. and S. K. Gupta (2018) Evaluation of chromium removal efficiency at varying operating conditions of a novel bioelectrochemical system. Biotechnol. Bioprocess Eng. 41: 1547–1554.

    CAS  Google Scholar 

  9. Tan, L., H. Wu, H. Cui, H. Xu, M. Xu, Y. Xiao, G. Qiu, X. Liu, H. Dong, and J. Xie (2020) Selective adsorption of palladium and platinum from secondary wastewater using Escherichia coli BL21 and Providencia vermicola. Bioprocess Biosyst Eng. 43: 1885–1897.

    Article  CAS  PubMed  Google Scholar 

  10. Qin, H., T. Hu, Y. Zhai, N. Lu, and J. Aliyeva (2020) Sonochemical synthesis of ZnS nanolayers on the surface of microbial cells and their application in the removal of heavy metals. J Hazard Mater. 400: 123161.

    Article  CAS  PubMed  Google Scholar 

  11. Boriová, K., S. Čerńanský, P. Matúš, M. Bujdoš, A. Šimonovićová, and M. Urík (2019) Removal of aluminium from aqueous solution by four wild-type strains of Aspergillus niger. Bioprocess Biosyst Eng. 42: 291–296.

    Article  PubMed  Google Scholar 

  12. Kouichi, K. and M. Ueda (2014) Generation of arming yeasts with active proteins and peptides via cell surface display system: cell surface engineering, bio-arming technology. Methods Mol. Biol. 1152: 137–155.

    Article  Google Scholar 

  13. Kouichi, K., K. Ebisutani, K. Iida, T. Nishitani, and M. Ueda (2014) Enhanced adsorption and recovery of uranyl ions by NikR mutant-displaying yeast. Biomolecules. 4: 390–401.

    Article  Google Scholar 

  14. Santelli, C. M., D. H. Pfister, D. Lazarus, L. Sun, W. D. Burgos, and C. M. Hansel (2010) Promotion of Mn(II) oxidation and remediation of coal mine drainage in passive treatment systems by diverse fungal and bacterial communities. Appl. Environ. Microbiol. 76: 4871–4875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sanyal, A., D. Rautaray, V. Bansal, A. Ahmad, and M. Sastry (2005) Heavy-metal remediation by a fungus as a means of production of lead and cadmium carbonate crystals. Langmuir. 21: 7220–7224.

    Article  CAS  PubMed  Google Scholar 

  16. Lim, J. S., S. M. Kim, S. Y. Lee, E. A. Stach, J. N. Culver, and M. T. Harris (2010) Quantitative study of Au(III) and Pd(II) ion biosorption on genetically engineered tobacco mosaic virus. J. Colloid. Interface Sci. 342: 455–461.

    Article  CAS  PubMed  Google Scholar 

  17. Franchi, M., L. Rinaldi, and E. Gallori (2002) Effect of Cu2+ and Hg2+ on gene transfer by transformation and transduction in Bacillus subtilis. Dev. Soil Sci. 28: 257–265.

    Google Scholar 

  18. Kanchana, S., J. Jeyanthi, R. Kathiravan, and K. Suganya (2014) Biosorption of heavy metals using algae: a review. IJPMBS. 3: 1–9.

    CAS  Google Scholar 

  19. Sweetly, J. (2014) Macroalgae as a potentially low-cost biosorbent for heavy metal removal: a review. Int. J. Pharm. Biol. Arch. 5: 17–26.

    Google Scholar 

  20. Abdullah, M. A., A. Ahmad, S. M. U. Shah, S. M. M. Shanab, H. E. A. Ali, M. A. M. Abo-State, and M. F. Othman (2016) Integrated algal engineering for bioenergy generation, effluent remediation, and production of high-value bioactive compounds. Biotechnol. Bioprocess Eng. 21: 236–249.

    Article  CAS  Google Scholar 

  21. Rayson, G. D. and P. A. Williams (2011) Comparative metal ion binding to native and chemically modified Datura innoxia immobilized biomaterials. pp. 141–158. In: R. Pignatello (ed.). Biomaterials — Physics and Chemistry. InTech, London, UK.

    Google Scholar 

  22. Perales-Vela, H. V., J. M. Peña-Castro, and R. O. Cañizares-Villanueva (2006) Heavy metal detoxification in eukaryotic microalgae. Chemosphere. 64: 1–10.

    Article  CAS  PubMed  Google Scholar 

  23. Brinza, L., M. Dring, and M. Gavrilescu (2007) Marine micro and macro algal species as biosorbents for heavy metals. Environ. Eng. Manag. J. 6: 237–251.

    Article  CAS  Google Scholar 

  24. Behnke, J. and J. LaRoche (2020) Iron uptake proteins in algae and the role of Iron Starvation-Induced Proteins (ISIPs). Eur. J. Phycol. 55: 339–360.

    Article  CAS  Google Scholar 

  25. Jaafari, J. and K. Yaghmaeian (2019) Optimization of heavy metal biosorption onto freshwater algae (Chlorella coloniales) using response surface methodology (RSM). Chemosphere. 217:447–455.

    Article  CAS  PubMed  Google Scholar 

  26. Charbit, A., J. C. Boulain, A. Ryter, and M. Hofnung (1986) Probing the topology of a bacterial membrane protein by genetic insertion of a foreign epitope; expression at the cell surface. EMBO J. 5: 3029–3037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Freudl, R., S. Macintyre, M. Degen, and U. Henning (1986) Cell surface exposure of the outer membrane protein OmpA of Escherichia coli K-12. J. Mol. Biol. 188: 491–494.

    Article  CAS  PubMed  Google Scholar 

  28. Parwin, S., S. Kalan, and P. Srivastava (2019) Bacterial cell surface display. pp. 81–108. In: N. K. Rathinam and R. K. Sani (eds.). Next Generation Biomanufacturing Technologies. American Chemical Society, Washington, DC, USA.

    Chapter  Google Scholar 

  29. Nishitani, T., M. Shimada, K. Kuroda, and M. Ueda (2010) Molecular design of yeast cell surface for adsorption and recovery of molybdenum, one of rare metals. Appl. Microbiol. Biotechnol. 86: 641–648.

    Article  CAS  PubMed  Google Scholar 

  30. Su, J., Y. Gao, T. Huang, X. Bai, J. Lu, and L. He (2019) Simultaneous removal of Cd2+, NO3-N and hardness by the bacterium Acinetobacter sp. CN86 in aerobic conditions. Bioprocess Biosyst. Eng. 42: 1333–1342.

    Article  CAS  PubMed  Google Scholar 

  31. Wang, L., H. Chua, Q. Zhou, P. K. Wong, S. N. Sin, W. L. Lo, and P. H. Yu (2003) Role of cell surface components on Cu2+ adsorption by Pseudomonas putida 5-x isolated from electroplating effluent. Water Res. 37: 561–568.

    Article  CAS  PubMed  Google Scholar 

  32. Jia, X., Y. Li, T. Xu, and K. Wu (2020) Display of lead-binding proteins on Escherichia coli surface for lead bioremediation. Biotechnol Bioeng. 117: 3820–3834.

    Article  CAS  PubMed  Google Scholar 

  33. Jiang, F., R. Cheng, X. Zhou, C. Zhang, W. Wang, H. Lin, and J. Lu (2019) Application of IscA surface-displayed Escherichia coli in bioadsorption of heavy metals in water. Acta Sci. Circum. 39: 2125–2133.

    CAS  Google Scholar 

  34. Wang, W., F. Jiang, F. Wu, J. Li, R. Ge, J. Li, G. Tan, Y. Pang, X. Zhou, X. Ren, B. Fan, and J. Lyu (2019) Biodetection and bioremediation of copper ions in environmental water samples using a temperature-controlled, dual-functional Escherichia coli cell. Appl. Microbiol. Biotechnol. 103: 6797–6807.

    Article  CAS  PubMed  Google Scholar 

  35. Liu, M., A. Kakade, P. Liu, P. Wang, Y. Tang, and X. Li (2019) Hg2+-binding peptide decreases mercury ion accumulation in fish through a cell surface display system. Sci. Total Environ. 659: 540–547.

    Article  CAS  PubMed  Google Scholar 

  36. Ravikumar, S., I. K. Yoo, S. Y. Lee, and S. H. Hong (2011) A study on the dynamics of the zraP gene expression profile and its application to the construction of zinc adsorption bacteria. Bioprocess Biosyst. Eng. 34: 1119–1126.

    Article  CAS  PubMed  Google Scholar 

  37. Zhu, N., B. Zhang, and Q. Yu (2020) Genetic engineering-facilitated coassembly of synthetic bacterial cells and magnetic nanoparticles for efficient heavy metal removal. ACS Appl. Mater. Interfaces. 12: 22948–22957.

    Article  CAS  PubMed  Google Scholar 

  38. Ravikumar, S., I. K. Yoo, S. Y. Lee, and S. H. Hong (2011) Construction of copper removing bacteria through the integration of two-component system and cell surface display. Appl. Biochem. Biotechnol. 165: 1674–1681.

    Article  CAS  PubMed  Google Scholar 

  39. Nguyen, T. T. L., H. R. Lee, S. H. Hong, J. R. Jang, W. S. Choe, and I. K. Yoo (2013) Selective lead adsorption by recombinant Escherichia coli displaying a lead-binding peptide. Appl. Biochem. Biotechnol. 169: 1188–1196.

    Article  CAS  PubMed  Google Scholar 

  40. Maruthamuthu, M. K., S. P. Nadarajan, I. Ganesh, S. Ravikumar, H. Yun, I. K. Yoo, and S. H. Hong (2015) Construction of a high efficiency copper adsorption bacterial system via peptide display and its application on copper dye polluted wastewater. Bioprocess Biosyst. Eng. 38: 2077–2084.

    Article  CAS  PubMed  Google Scholar 

  41. Ferri, S., M. Nakamura, A. Ito, M. Nakajima, K. Abe, K. Kojima, and K. Sode (2015) Efficient surface-display of autotransporter proteins in cyanobacteria. Algal. Res. 12: 337–340.

    Article  Google Scholar 

  42. Hinc, K., S. Ghandili, G. Karbalaee, A. Shali, K. A. Noghabi, E. Ricca, and G. Ahmadian (2010) Efficient binding of nickel ions to recombinant Bacillus subtilis spores. Res. Microbiol. 161: 757–764.

    Article  CAS  PubMed  Google Scholar 

  43. Kim, W., D. Kim, S. Back, Y. S. Lee, A. H. Abari, and J. Kim (2019) Removal of Ni and Cd by surface display of polyhistidine on Bacillus subtilis spore using CotE anchor protein. Biotechnol. Bioprocess Eng. 24: 375–381.

    Article  CAS  Google Scholar 

  44. Liu, Z., S. H. Ho, T. Hasunuma, J. S. Chang, N. Q. Ren, and A. Kondo (2016) Recent advances in yeast cell-surface display technologies for waste biorefineries. Bioresour. Technol. 215: 324–333.

    Article  CAS  PubMed  Google Scholar 

  45. Chung, S., J. Kim, and K. Cho (2016) Yeast cell having acid tolerance, method of preparing yeast cell and use thereof. US Patent 9,994,877B2.

  46. Tao, H. C., P. S. Li, Q. S. Liu, J. Su, G. Y. Qiu, and Z. G. Li (2016) Surface-engineered Saccharomyces cerevisiae cells displaying redesigned CadR for enhancement of adsorption of cadmium (II). J. Chem. Technol. Biotechnol. 91: 1889–1895.

    Article  CAS  Google Scholar 

  47. Kuroda, K., T. Nishitani, and M. Ueda (2012) Specific adsorption of tungstate by cell surface display of the newly designed ModE mutant. Appl. Microbiol. Biotechnol. 96: 153–159.

    Article  CAS  PubMed  Google Scholar 

  48. Matano, Y., T. Hasunuma, and A. Kondo (2013) Cell recycle batch fermentation of high-solid lignocellulose using a recombinant cellulase-displaying yeast strain for high yield ethanol production in consolidated bioprocessing. Bioresour. Technol. 135: 403–409.

    Article  CAS  PubMed  Google Scholar 

  49. Cruz-Teran, C. A., K. Bacon, N. McArthur, and B. M. Rao (2018) An engineered Sso7d variant enables efficient magnetization of yeast cells. ACS Comb. Sci. 20: 579–584.

    Article  CAS  PubMed  Google Scholar 

  50. Hui, C. Y., Y. Guo, X. Q. Yang, W. Zhang, and X. Q. Huang (2018) Surface display of metal binding domain derived from PbrR on Escherichia coli specifically increases lead(II) adsorption. Biotechnol. Lett. 40: 837–845.

    Article  CAS  PubMed  Google Scholar 

  51. Yang, T., M. L. Chen, and J. H. Wang (2015) Genetic and chemical modification of cells for selective separation and analysis of heavy metals of biological or environmental significance. Trends Analyt. Chem. 66: 90–102.

    Article  CAS  Google Scholar 

  52. Wei, W., X. Liu, P. Sun, X. Wang, H. Zhu, M. Hong, Z. W. Mao, and J. Zhao (2014) Simple whole-cell biodetection and bioremediation of heavy metals based on an engineered lead-specific operon. Environ. Sci. Technol. 48: 3363–3371.

    Article  CAS  PubMed  Google Scholar 

  53. Ravikumar, S., I. Ganesh, I. Yoo, and S. H. Hong (2012) Construction of a bacterial biosensor for zinc and copper and its application to the development of multifunctional heavy metal adsorption bacteria. Process Biochem. 47: 758–765.

    Article  CAS  Google Scholar 

  54. Patel, J., Q. Zhang, R. M. L. McKay, R. Vincent, and Z. Xu (2010) Genetic engineering of Caulobacter crescentus for removal of cadmium from water. Appl. Biochem. Biotechnol. 160: 232–243.

    Article  CAS  PubMed  Google Scholar 

  55. Kotrba, P. and T. Ruml (2010) Surface display of metal fixation motifs of bacterial P1-type ATPases specifically promotes biosorption of Pb2+ by Saccharomyces cerevisiae. Appl. Environ. Microbiol. 76: 2615–2622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mishra, R. K. and V. Sharma (2017) Biotic strategies for toxic heavy metal decontamination. Recent. Pat. Biotechnol. 11: 218–228.

    Article  CAS  PubMed  Google Scholar 

  57. Hassan, A., A. Periathamby, A. Ahmed, O. Innocent, and F. S. Hamid (2020) Effective bioremediation of heavy metal-contaminated landfill soil through bioaugmentation using consortia of fungi. J. Soils Sediments. 20: 66–80.

    Article  CAS  Google Scholar 

  58. Khan, A. G. (2020) Promises and potential of in situ nanophytoremediation strategy to mycorrhizo-remediate heavy metal contaminated soils using non-food bioenergy crops (Vetiver zizinoides & Cannabis sativa). Int. J. Phytoremediation. 22: 900–915.

    Article  CAS  PubMed  Google Scholar 

  59. Khan, I. U., J. K. Rono, B. Q. Zhang, X. S. Liu, M. Q. Wang, L. L. Wang, X. C. Wu, X. Chen, H. W. Cao, and Z. M. Yang (2019) Identification of novel rice (Oryza sativa) HPP and HIPP genes tolerant to heavy metal toxicity. Ecotoxicol. Environ. Saf. 175: 8–18.

    Article  CAS  PubMed  Google Scholar 

  60. Ma, B., Z. Wang, X. Yuan, K. Cen, J. Li, N. Yang, and X. Zhu (2020) In situ stabilization of heavy metals in a tailing pond with a new method for the addition of mineral stabilizers-high-pressure rotary jet technology. Environ. Sci. Pollut. Res. Int. 27: 15388–15400.

    Article  CAS  PubMed  Google Scholar 

  61. Fang, C. and V. Achal (2019) The potential of microbial fuel cells for remediation of heavy metals from soil and water-review of application. Microorganisms. 7: 697.

    Article  CAS  PubMed Central  Google Scholar 

  62. Li, C., M. Wei, Y. Zhou, and A. Yin (2019) Application of chlorine dioxide in cell surface modification to enhance its mechanical stability and metal ion adsorption. ACS Omega. 4: 5937–5943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Endicott, N. P., G. S. M. Rivera, J. Yang, and T. A. Wencewicz (2020) Emergence of ferrichelatase activity in a siderophorebinding protein supports an iron shuttle in bacteria. ACS Cent. Sci. 4: 493–506.

    Article  Google Scholar 

  64. Peng, H., W. Xie, D. Li, M. Wu, Y. Zhang, H. Xu, J. Ye, T. Ye, L. Xu, Y. Liang, and W. Liu (2019) Copper-resistant mechanism of Ochrobactrum MT180101 and its application in membrane bioreactor for treating electroplating wastewater. Ecotoxicol. Environ. Saf. 168: 17–26.

    Article  CAS  PubMed  Google Scholar 

  65. Biondo, R., F. A. da Silva, E. J. Vicenté, J. E. S. Sarkis, and A. C. G. Schenberg (2012) Synthetic phytochelatin surface display in Cupriavidus metallidurans CH34 for enhanced metals bioremediation. Environ. Sci. Technol. 46: 8325–8332.

    Article  CAS  PubMed  Google Scholar 

  66. Park, D. M., D. W. Reed, M. C. Yung, A. Eslamimanesh, M. M. Lencka, A. Anderko, Y. Fujita, R. E. Riman, A. Navrotsky, and Y. Jiao (2016) Bioadsorption of rare earth elements through cell surface display of lanthanide binding tags. Environ. Sci. Technol. 50: 2735–2742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Won, Y., A. D. Pagar, M. D. Patil, P. E. Dawson, and H. Yun (2019) Recent advances in enzyme engineering through incorporation of unnatural amino acids. Biotechnol. Bioprocess Eng. 24: 592–604.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors declare that they have no conflicts of interest. This work was supported by the 2020 Research Fund of the University of Ulsan, Republic of Korea.

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tae Wan Kim or Soon Ho Hong.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Selvamani, V., Yoo, IK. et al. A Novel Strategy for the Microbial Removal of Heavy Metals: Cell-surface Display of Peptides. Biotechnol Bioproc E 26, 1–9 (2021). https://doi.org/10.1007/s12257-020-0218-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0218-z

Keywords

Navigation