Skip to main content

Advertisement

Log in

The Role of Interleukin-9 in Cancer

  • Review
  • Published:
Pathology & Oncology Research

Abstract

Interluekin-9 (IL-9) is produced predominantly by helper T cells such as Th2 and Th9 cells. It normally functions through the activation of a JAK/STAT pathway and plays a critical role in immunity and the pathogenesis of cancer. In cancer, it yields different responses depending on the cancer cell line involved. This review is a summary of what is known about the involvement of IL-9 in various cancer cell lines as well as its role in immunity with a focus on allergic responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lavorgna A, Matsuoka M, Harhaj EW (2014) A critical role for IL-17RB signaling in HTLV-1 tax-induced NF-KB activation and T cell transformation. PLoS Pathog 10(10):1–16

    Google Scholar 

  2. Visekruna A, Ritter J, Scholz T, Campos L, Guralnik A, Poncette L, Raifer H, Hagner S, Garn H, Staudt V, Bopp T, Reuter S, Taube C, Loser K, Huber M (2013) Tc9 cells, a new subset of CD8(+) T cells, support Th2-mediated airway inflammation. Eur J Immunol 43:606–618

    CAS  PubMed  Google Scholar 

  3. Leech MD, Grencis RK (2006) Induction of enhanced immunity to intestinal nematodes using IL-9- producing dendritic cells. J Immunol 176:2505–2511

    CAS  PubMed  Google Scholar 

  4. Turner JE, Morrison PJ, Wilhelm C, Wilson M, Ahlfors H, Renauld JC, Panzer U, Helmby H, Stockinger B (2013) IL-9-mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation. J Exp Med 210:2951–2965

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hoelzinger DB, Dominguez AL, Cohen PA, Gendler SJ (2014) Inhibition of adaptive immunity by IL-9 can be disrupted to achieve rapid T cell sensitization and rejection of progressive tumor challenges. Cancer Res 74(23):6845–6855

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Nowak EC, Weaver CT, Turner H, Begum-Haque S, Becher B, Schreiner B, Coyle AJ, Kasper LH, Noelle RJ (2009) IL-9 as a mediator of Th17-driven inflammatory disease. J Exp Med 206:1653–1660

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Elyaman W, Bradshaw EM, Uyttenhove C, Dardalhon V, Awasthi A, Imitola J, Bettelli E, Oukka M, van Snick J, Renauld JC, Kuchroo VK, Khoury SJ (2009) IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+ natural regulatory T cells. Proc Natl Acad Sci U S A 106:12885–12890

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Veldhoen M, Uyttenhove C, van Snick J, Helmby H, Westendorf A, Buer J, Martin B, Wilhelm C, Stockinger B (2008) Transforming growth factor-β ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nature Immunol. 9:1341–1346

    CAS  Google Scholar 

  9. Lauwerys BR, Garot N, Renauld JC, Houssiau FA (2000) Cytokine production and killer activity of NK/ T-NK cells derived with IL-2, IL-15, or the combination of IL-12 and IL-18. J Immunol 165:1847–1853

    CAS  PubMed  Google Scholar 

  10. Jones TG, Hallgren J, Humbles A, Burwell T, Finkelman FD, Alcaide P, Austen KF, Gurish MF (2009) Antigen-induced increases in pulmonary mast cell progenitor numbers depend on IL-9 and CD1d-restricted NKT cells. J Immunol 183:5251–5260

    CAS  PubMed  Google Scholar 

  11. Schmitt E et al (1991) IL-1 serves as a secondary signal for IL-9 expression. J Immunol 147:3848–3854

    CAS  PubMed  Google Scholar 

  12. Schmitt E et al (1994) IL-9 production of naive CD4+ T cells depends on IL-2, is synergistically enhanced by a combination of TGF-beta and IL-4, and is inhibited by IFN-gamma. J Immunol 153:3989–3996

    CAS  PubMed  Google Scholar 

  13. Chang H-C et al (2005) PU.1 expression delineates heterogeneity in primary Th2 cells. Immunity 22:693–703

    CAS  PubMed  Google Scholar 

  14. Schmitt E, Klein M, Bopp T (2014) Th9 cells, new players in adaptive immunity. Trends Immunol 35(2):61–68

    CAS  PubMed  Google Scholar 

  15. Palmer MT, Lee YK, Maynard CL, Oliver JR, Bikle DD, Jetten AM, Weaver CT (2011) Lineage-specific effects of 1,25-dihydroxyvitamin D(3) on the development of effector CD4 T cells. J Biol Chem 286:997–1004

    CAS  PubMed  Google Scholar 

  16. Chang HC et al (2010) The transcription factor PU.1 is required for the development of IL-9-producing T-cells and allergic inflammation. Nature Immunol 11:527–534

    CAS  Google Scholar 

  17. Angkasekwinai P, Chang SH, Thapa M, Watarai H, Dong C (2010) Regulation of IL-9 expression by IL-25 signaling. Nature Immunol 11:250–256

    CAS  Google Scholar 

  18. Ahyi AN, Chang HC, Dent AL, Nutt SL, Kaplan MH (2009) IFN regulatory factor 4 regulates the expression of a subset of Th2 cytokines. J Immunol 183:1598–1606

    CAS  PubMed  Google Scholar 

  19. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    CAS  PubMed  Google Scholar 

  20. Kouzarides T (2000) Acetylation: a regulatory modification to rival phosphorylation? EMBO J 19:1176–1179

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mak KS, Funnell AP, Pearson RC, Crossley M (2011) PU.1 and Haematopoietic cell fate: dosage matters. Int. J. Cell biol:808524

  22. Asao H, Okuyama C, Kumaki S, Ishii N, Tsuchiya S, Foster D, Sugamura K (2001) Cutting edge: the common gamma-chain is an indispensable subunit of the IL-21 receptor complex. J Immunol 167:1–5

    CAS  PubMed  Google Scholar 

  23. Demoulin JB, Renauld JC (1998) "Signalling by cytokines interacting with the interleukin-2 receptor gamma chain", cytokines cell. Mol Ther 4:243–256

    CAS  Google Scholar 

  24. Demoulin JB, Uyttenhove C, Van Roost E, de Lestre B, Donckers D, Van Snick J, Renauld JC (1996) "a single tyrosine of the interleukin-9 (IL-9) receptor is required for STAT activation, antiapoptotic activity, and growth regulation by IL-9", Mol cell. Biol. 16:4710–4716

    CAS  Google Scholar 

  25. Renauld JC, Druez C, Kermouni A, Houssiau F, Uyttenhove C, Van Roost E, Van Snick J (1992) Expression cloning of the murine and human interleukin 9 receptor cDNAs. Proc Natl Acad Sci U S A 89:5690–5694

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhu YX, Sun HB, Tsang ML, McMahel J, Grigsby S, Yin T, Yang YC (1997) Critical cytoplasmic domains of human interleukin-9 receptor alpha chain in interleukin-9-mediated cell proliferation and signal transduction. J Biol Chem 272:21334–21340

    CAS  PubMed  Google Scholar 

  27. Zhang J, Wang WD, Geng QR, Wang L, Chen XQ, Liu CC, Lv Y (2014) Serum levels of interleukin-9 correlate with negative prognostic factors in extranodal NK/T-cell lymphoma. PLoS One 9:e94637

    PubMed  PubMed Central  Google Scholar 

  28. Lv X, Feng L, Fang X, Jiang Y, Wang X (2013) Overexpression of IL-9 receptor in diffuse large B-cell lymphoma. Int J Clin Exp Pathol 6:911–916

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hamre H, Zeller B, Kanellopoulos A, Ruud E, Fosså SD, Loge JH, Aukrust P, Halvorsen B, Mollnes TE, Kiserud CE (2013) Serum cytokines and chronic fatigue in adults surviving after childhood leukemia and lymphoma. Brain Behav Immun 30:80–87

    CAS  PubMed  Google Scholar 

  30. Kobayashi H, Kumai T, Hayashi S, Matsuda Y, Aoki N, Sato K, Kimura S, Celis E (2012) A naturally processed HLA-DR-bound peptide from the IL-9 receptor alpha of HTLV-1-transformed T cells serves as a T helper epitope. Cancer Immunol Immunother 61:2215–2225

    CAS  PubMed  Google Scholar 

  31. Fischer M, Bijman M, Molin D, Cormont F, Uyttenhove C, van Snick J, Sundström C, Enblad G, Nilsson G (2003) Increased serum levels of interleukin-9 correlate to negative prognostic factors in Hodgkin's lymphoma. Leukemia 17:2513–2516

    CAS  PubMed  Google Scholar 

  32. Huang Y, Cao Y, Zhang S et al (2015) Association between low levels of interleukin-9 and colon cancer progression. Experimental and Therapeutic Medicine 10:942–946

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ye ZJ, Zhou Q, Yin W, Yuan ML, Yang WB, Xiong XZ, Zhang JC, Shi HZ (2012) Differentiation and immune regulation of IL-9 producing CD4+ T cells in malignant pleural effusion. Am J Respir Crit Care Med 186:1168–1179

    CAS  PubMed  Google Scholar 

  34. Kelleher K, Bean K, Clark SC, Leung WY, Yang-Feng TL, Chen JW, Lin PF, Luo W, Yang YC (1991) Human interleukin-9: genomic sequence, chromosomal location, and sequences essential for its expression in human T-cell leukemia virus (HTLV)-I-transformed human T cells. Blood 77:1436–1441

    CAS  PubMed  Google Scholar 

  35. Chen N, Lv X, Li P, Lu K, Wang X (2014) Role of high expression of IL-9 in prognosis of CLL. Int J Clin Exp Pathol 7(2):716–721

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hsieh TH, Hsu CY, Tsai CF et al (2016) A novel cell penetrating peptide suppresses breast tumorigenesis by inbiting beta-catenin/LEF-1 signaling. Sci Rep:1–12

  37. Eller K, Wolf D, Huber JM, Metz M, Mayer G, McKenzie AN et al IL-9 production by regulatory T cells recruits mast cells that are essential for regulatory T cell-induced immune suppression. J Immunol 186:83–91

  38. Lu LF, Lind EF, Gondek DC, Bennett KA, Gleeson MW, Pino-Lagos K, Scott ZA, Coyle AJ, Reed JL, van Snick J, Strom TB, Zheng XX, Noelle RJ (2006) Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature. 442:997–1002

    CAS  PubMed  Google Scholar 

  39. Yang Z, Zhang B, Li D, Lv M, Huang C, Shen GX et al Mast cells mobilize myeloid-derived suppressor cells and Treg cells in tumor microenvironment via IL-17 pathway in murine hepatocarcinoma model. PLoS ONE 5:e8922

  40. Zimancevic-Simonovic S, Mihaljevic O, Majsotrovic I et al (2015) Cytokine production in patients with papillary thyroid cancer and associated autoimmune Hashimoto thyroiditis. Cancer Immunol Immunother 64:1011–1019

    Google Scholar 

  41. Qiu L, Lai R, Lin Q, Lau E, Thomazy DM, Calame D, Ford RJ, Kwak LW, Kirken RA, Amin HM (2006) Autocrine release of interleukin-9 promotes Jak3-dependent survival of ALK+ anaplastic large-cell lymphoma cells. Blood 108(7):2407–2415

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Koo GC, Tan SY, Tang T, Poon SL, Allen GE, Tan L, Chong SC, Ong WS, Tay K, Tao M, Quek R, Loong S, Yeoh KW, Yap SP, Lee KA, Lim LC, Tan D, Goh C, Cutcutache I, Yu W, Young Ng CC, Rajasegaran V, Heng HL, Gan A, Ong CK, Rozen S, Tan P, Teh BT, Lim ST (2012) Janus kinase 3-activating mutations identified in natural killer/T-cell lymphoma. Cancer Discov 2:591–597

    CAS  PubMed  Google Scholar 

  43. Bouchekioua A, Scourzic L, de Wever O, Zhang Y, Cervera P, Aline-Fardin A, Mercher T, Gaulard P, Nyga R, Jeziorowska D, Douay L, Vainchenker W, Louache F, Gespach C, Solary E, Coppo P (2014) JAK3 deregulation by activating mutations confers invasive growth advantage in extranodal nasal-type natural killer cell lymphoma. Leukemia 28:338–348

    CAS  PubMed  Google Scholar 

  44. Poiesz BJ, Ruscetti FW, Mier JW, Woods AM, Gallo RC (1980) T-cell lines established from human T-lymphocytic neoplasias by direct response to T-cell growth factor. Proc Natl Acad Sci U S A 77:6815–6819

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen N, Lu K, Li P, Lv X, Wang X (2014) Overexpression of IL-9 induced by STAT6 activation promotes the pathogenesis of chronic lymphocytic leukemia. Int J Clin Exp Pathol 7:2319–2323

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Vieyra-Garcia PA, Wei T, Naym DG et al (2016) STAT3/5 dependent IL-9 overexpression contributes to neoplastic cell survival in mycosis fungoides. Clin Cancer Res:1–32

  47. Merz H, Houssiau FA, Orscheschek K, Renauld JC, Fliedner A, Herin M, Noel H, Kadin M, Mueller-Hermelink HK, Van Snick J et al (1991) Interleukin-9 expression in human malignant lymphomas: unique association with Hodgkin’s disease and large cell anaplastic lymphoma. Blood. 78:1311–1317

    CAS  PubMed  Google Scholar 

  48. Rawstron AC, Böttcher S, Letestu R, Villamor N, Fazi C, Kartsios H, de Tute RM, Shingles J, Ritgen M, Moreno C, Lin K, Pettitt AR, Kneba M, Montserrat E, Cymbalista F, Hallek M, Hillmen P, Ghia P (2013) Improving efficiency and sensitivity: European research initiative in CLL (ERIC) update on the international harmonised approach for flow cytometric residual disease monitoring in CLL. Leukemia 27:142–149

    CAS  PubMed  Google Scholar 

  49. Nagato T, Kobayashi H, Kishibe K, Takahara M, Ogino T, Ishii H, Oikawa K, Aoki N, Sato K, Kimura S, Shimizu N, Tateno M, Harabuchi Y (2005) Expression of interleukin-9 in nasal natural killer/T-cell lymphoma cell lines and patients. Clin Cancer Res 11:8250–8257

    CAS  PubMed  Google Scholar 

  50. Fang Y, Chen X, Bai Q, Qin C, Mohamud AO, Zhu Z, Ball TW, Ruth CM, Newcomer DR, Herrick EJ, Nicholl MB (2015) IL-9 inhibits HTB-72 melanoma cell growth through upregulation of p21 and TRAIL. J Surg Oncol 111:969–974

    CAS  PubMed  Google Scholar 

  51. Kim IK, Kim BS, Koh CH, Seok JW, Park JS, Shin KS, Bae EA, Lee GE, Jeon H, Cho J, Jung Y, Han D, Kwon BS, Lee HY, Chung Y, Kang CY (2015) Glucocorticoid-induced tumor necrosis factor receptor-related protein co-stimulation facilitates tumor regression by inducing IL-9-proudcing helper T cells. Nat Med 21(9):1010–1017

    CAS  PubMed  Google Scholar 

  52. Lu Y, Hong S, Li H, Park J, Hong B, Wang L, Zheng Y, Liu Z, Xu J, He J, Yang J, Qian J, Yi Q (2012) Th9 Cells Promote Antitumor immune responses in vivo. J Clin Investig 122(11):4160–4171

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lu Y, Wang Q, Yi Q (2014) Anticancer Tc9 cells. Oncolmmunology 1-1:1–3

    Google Scholar 

  54. Lu Y, Hong B, Li H (2014) Tumor specific IL-9-producing CD8+ Tc9 cells are superior effector than type-I cytotoxic Tc1 cells for adoptive immunotherapy of cancer cells. PNAS 111(6):2265–2270

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Nakatsukasa H, Zhang D, Maruyama T, Chen H, Cui K, Ishikawa M, Deng L, Zanvit P, Tu E, Jin W, Abbatiello B, Goldberg N, Chen Q, Sun L, Zhao K, Chen WJ (2015) The DNA binding inhibitor Id3 regulates IL-9 production in CD4+ T cells. Nat Immunol 16(10):1077–1084

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by grants for Yujiang Fang (Iowa Science Foundation Grant ISF 16–8, IOER 05–14-01, IOER 112–3749 and IOER 112–3104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujiang Fang.

Ethics declarations

Conflict of Interest

The authors have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.E., Zhu, Z., Bai, Q. et al. The Role of Interleukin-9 in Cancer. Pathol. Oncol. Res. 26, 2017–2022 (2020). https://doi.org/10.1007/s12253-019-00665-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-019-00665-6

Keywords

Navigation