Skip to main content
Log in

Overexpression of Wild-Type p53-Induced Phosphatase 1 Confers Poor Prognosis of Patients with Nasopharyngeal Carcinoma

  • Research
  • Published:
Pathology & Oncology Research

Abstract

This study aimed to analyze the expression, clinical significance of proto-oncogene in nasopharyngeal carcinoma and the biological effect in its cell line by siRNA targeting wild-type p53-induced phosphatase 1 (Wip1). Immunohistochemistry and western blot were respectively used to analyze Wip1 protein expression in 85 cases of nasopharyngeal cancer and normal tissues to study the relationship between Wip1 expression and clinical factors. Wip1 siRNA was transiently transfected into papillary nasopharyngeal carcinoma cell by liposome-mediated method and was detected by Quantitative real-time RT-PCR (qRT-PCR) and western blot. MTT assay, cell apoptosis, migration and invasion were also conducted as to the influence of the down-regulated expression of Wip1 that might be found on CNE2 cells biological effect. The level of Wip1 protein expression was found to be significantly higher in nasopharyngeal cancer tissue than normal tissues (P <0.05). There were significant differences between Wip1 expression and T stages, lymph node metastasis, clinical stages, tumor differentiation and radiotherapy response (P < 0.05), regardless of age, gender (P > 0.05). Meanwhile, Increased expression of Wip1 was significantly with poor overall survival time by Kaplan-Meier analysis (P < 0.05). Wip1 expression deletion determines independent risk factors for prognosis of patients with nasopharyngeal carcinoma in addition to tumor T stage, clinical stage, histological grade and lymph node metastasis outside by Cox-2 in the regression analysis (P < 0.05). qRT-PCR and Western blot showed that CNE2 cell transfected Wip1 siRNA had a lower relative expressive content than normal cell (P < 0.05). MTT assay, cell apoptosis, cell cycles demonstrated that CNE2 cell transfected Wip1 siRNA had a lower survival fraction, higher cell apoptosis, more percentage of the G0/G1 phases, significant decrease in migration and invasion, and higher P53 and P16 protein expression compared with CNE2 cell untransfected Wip1 siRNA (P < 0.05). Wip1 protein was increased in nasopharyngeal carcinoma, specifically in T stages, lymph node metastasis, clinical stages and tumor differentiation. Wip1 may involved in the biological processes of nasopharyngeal cancer cell proliferation, apoptosis, and migration and invasion by regulation P53 and P16 protein expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T (2012) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010:a systematic analysisfor the global burden of disease study 2010. Lancet 380(9859):2095–128

    Article  PubMed  Google Scholar 

  2. Wei WI, Sham JS (2005) Nasopharyngeal carcinoma. Lancet 365(9476):2041–2054

    Article  PubMed  Google Scholar 

  3. Chang ET, Adami HO (2006) The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev 15(10):1765–1777

    Article  CAS  PubMed  Google Scholar 

  4. Lo KW, To KF, Huang DP (2004) Focus on nasopharyngeal carcinoma. Cancer Cell 5(5):423–428

    Article  CAS  PubMed  Google Scholar 

  5. Fuku T, Semba S, Yutori H, Yokozaki H (2007) Increased wild-type p53-induced phosphatase 1 (Wip1 or PPM1D) expression correlated with downregulation of checkpoint kinase 2 in human gastric carcinoma. Pathol Int 57(9):566–571

    Article  CAS  PubMed  Google Scholar 

  6. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG (2000) New guidelines to evaluate the response to treatment in solid tumors. European organization for research and treatment of cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92(3):205–216

    Article  CAS  PubMed  Google Scholar 

  7. McCarty KS Jr, Szabo E, Flowers JL, Cox EB, Leight GS, Miller L, Konrath J, Soper JT, Budwit DA, Creasman WT (1986) Use of a monoclonal anti-estrogen receptor antibody in the immunohistochemical evaluation of human tumors. Cancer Res 46(8 Suppl):4244s–4248s

    PubMed  Google Scholar 

  8. Turashvili G, Bouchal J, Ehrmann J, Fridman E, Skarda J, Kolar Z (2007) Novel immunohistochemical markers for the differentiation of lobular and ductal invasive breast carcinomas. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 151(1):59–64

    Article  CAS  PubMed  Google Scholar 

  9. Rai-el-Balhaa G, Pellerin JL, Bodin G, Abdullah A, Hiron H (1985) Lymphoblastic transformation assay of sheep peripheral blood lymphocytes: a new rapid and easy-to-read technique. Comp Immunol Microbiol Infect Dis 8(3–4):311–318

    Article  CAS  PubMed  Google Scholar 

  10. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C (1995) Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184(1):39–51, A novel assay for apoptosis

    Article  CAS  PubMed  Google Scholar 

  11. Li J, Yang Y, Peng Y, Austin RJ, van Eyndhoven WG, Nguyen KC, Gabriele T, McCurrach ME, Marks JR, Hoey T, Lowe SW, Powers S (2002) Oncogenic properties of PPM1D located within a breast cancer amplification epicenter at 17q23. Nat Genet 31(2):133–134

    Article  CAS  PubMed  Google Scholar 

  12. Saito-Ohara F, Imoto I, Inoue J, Inoue J, Hosoi H, Nakagawara A, Sugimoto T, Inazawa J (2003) PPM1D is a potential target for 17q gain in neuroblastoma. Cancer Res 63(8):1876–1883

    CAS  PubMed  Google Scholar 

  13. Mendrzyk F, Radlwimmer B, Joos S, Kokocinski F, Benner A, Stange DE, Neben K, Fiegler H, Carter NP, Reifenberger G, Korshunov A, Lichter P (2005) enomic and protein expression profiling identifies CDK6 as novel in dependent prognostic marker in medulloblastoma. J Clin Oncol 23(34):8853–8862

    Article  CAS  PubMed  Google Scholar 

  14. Yang DH, He JA, Li J, Ma WF, Hu XH, Xin SJ, Duan ZQ (2010) Expression of proto-oncogene Wip1 in breast cancer and its clinical significance. Nat Med J Chin 90(8):519–522

    CAS  Google Scholar 

  15. Ling CH, Jiao BH, Lu SK, Guo EK, Zhang GY (2011) The Expression of proto-oncogene Wip1 in human glioblastoma multiforme and cell lines. Chin J Neurol Oncol 9(1):1–6

    Google Scholar 

  16. Ling CH, Jiao BH, Guo EK, Lu SK (2011) Over-expression of proto-oncogene Wip1 in intracranial ependymomas association with P53. Basic Clin Med 31(4):430–434

    Google Scholar 

  17. Yang DH, Zhang H, Hu XH, Xin SJ, Duan ZQ (2011) Abnormality of p16/p38MAPK/p53/Wip1 pathway in papillary thyroid cancer and its significance. Chin J Gen Surg 20(11):1199–1202

    CAS  Google Scholar 

  18. Oliva TM, Erthonaud BV, Chevalier A, Ducrot C, Marsolier-Kergoat MC, Mann C, Leteurtre F (2007) The Wip1 phosphatase (PPM1D) antagonizes activation of the Chk2 tumour suppressor kinase. Oncogene 26(10):1449–1458

    Article  Google Scholar 

  19. Liao Q, Guo X, Li X, Xiong W, Li X, Yang J, Chen P, Zhang W, Yu H, Tang H, Deng M, Liang F, Wu M, Luo Z, Wang R, Zeng X, Zeng Z, Li G (2013) Prohibitin is an important biomarker for nasopharyngeal carcinoma progression and prognosis. Eur J Cancer Prev 22(1):68–76

    Article  CAS  PubMed  Google Scholar 

  20. Zhou JY, Chong VF, Khoo JB, Chan KL, Huang J (2007) The relationship between nasopharyngeal carcinoma tumor volume and TNM T- classification:a quantitativeanalysis. Eur Arch Otorhinolaryngol 264(2):169–174

    Article  PubMed  Google Scholar 

  21. Wu Z, Zeng RF, Su Y, Gu MF, Huang SM (2013) Prognostic significance of tumor volume in patients with nasopharyngeal carcinoma undergoing intensity-modulated radiation therapy. Head Neck 35(5):689–694

    Article  PubMed  Google Scholar 

  22. Wang P, Rao J, Yang HF, Zhao HY, Yang L (2010) Inhibitory effects of lentivirus mediated RNA interference targeting human Wip1 gene on the prolif-eration of human glioma U251 cells. Chin J Exp Surg 27(4):76–79

    Google Scholar 

  23. Baxter EW, Milner J (2010) p53 Regulates LIF expression in human medulloblastoma cells. J Neuro-Oncol 97(3):373–382

    Article  CAS  Google Scholar 

  24. Lowe JM, Cha H, Yang Q, Fornace AJ Jr (2010) Nuclear factor- kappaB (NF-kappaB) is a novel positive transcriptional regulator of the oncogenic Wip1 phosphatase. J Biol Chem 285(8):5249–5257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Armstrong NJ, Fagotto F, Pthmann C, Rupp RA (2012) Maternal Wnt/β-catenin signaling coactivates transcription through NF-κB binding sites during Xenopus axis ormation. PLoS One 7(5):e36136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Pan H, Zhou W, He W, Liu X, Ding Q, Ling L, Zha X, Wang S (2012) Genistein inhibits MDA-MB-231 triple- negative breast cancer cell growth by inhibiting NF-kappaB activity via the Notch-1 pathway. Int J Mol Med 30(2):337–343

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. N. Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, G.G., Zhang, J., Ma, X.B. et al. Overexpression of Wild-Type p53-Induced Phosphatase 1 Confers Poor Prognosis of Patients with Nasopharyngeal Carcinoma. Pathol. Oncol. Res. 21, 283–291 (2015). https://doi.org/10.1007/s12253-014-9819-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-014-9819-1

Keywords

Navigation