Skip to main content

Advertisement

Log in

The TPO/c-MPL Pathway in the Bone Marrow may Protect Leukemia Cells from Chemotherapy in AML Patients

  • Research
  • Published:
Pathology & Oncology Research

Abstract

Accumulating evidence indicates that the interaction of human LSCs (leukemic stem cells) with the hematopoietic microenvironment, mediated by the thrombopoietin (TPO)/c-MPL pathway, may be an underlying mechanism for resistance to cell cycle–dependent cytotoxic chemotherapy. However, the role of TPO/c-MPL signaling in AML (acute myelogenous leukemia) chemotherapy resistance hasn’t been fully understood. The c-MPL and TPO levels in different AML samples were measured by flow cytometry and ELISA. We also assessed the TPO levels in the osteoblasts derived from bone mesenchymal stem cells (BMSCs). The survival rate of an AML cell line that had been co-cultured with different BMSC-derived osteoblasts was measured to determine the IC50 of an AML chemotherapy drug daunorubicin (DNR). The levels of TPO/c-MPL in the initial and relapse AML patients were significantly higher than that in the control (P < 0.05). The osteoblasts derived from AML patients’ BMSCs secreted more TPO than the osteoblasts derived from normal control BMSCs (P < 0.05). A strong positive correlation between the TPO level and c-MPL expression was found in the bone marrow mononuclear cells of the relapse AML patients. More importantly, the IC50 of DNR in the HEL + AML-derived osteoblasts was the highest among all co-culture systems. High level of TPO/c-MPL signaling may protect LSCs from chemotherapy in AML. The effects of inhibition of the TPO/c-MPL pathway on enhancing the chemotherapy sensitivity of AML cells, and on their downstream effector molecules that direct the interactions between patient-derived blasts and leukemia repopulating cells need to be further studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. She M, Niu X, Chen X, Li J, Zhou M, He Y, Le Y, Guo K (2012) Resistance of leukemic stem-like cells in AML cell line KG1a to natural killer cell-mediated cytotoxicity. Cancer Lett 318(2):173–179. doi:10.1016/j.canlet.2011.12.017

    Article  PubMed  CAS  Google Scholar 

  2. Nervi B, Ramirez P, Rettig MP, Uy GL, Holt MS, Ritchey JK, Prior JL, Piwnica-Worms D, Bridger G, Ley TJ, DiPersio JF (2009) Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood 113(24):6206–6214. doi:10.1182/blood-2008-06-162123

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Saito Y, Kitamura H, Hijikata A, Tomizawa-Murasawa M, Tanaka S, Takagi S, Uchida N, Suzuki N, Sone A, Najima Y, Ozawa H, Wake A, Taniguchi S, Shultz LD, Ohara O, Ishikawa F (2010) Identification of therapeutic targets for quiescent, chemotherapy-resistant human leukemia stem cells. Sci Transl Med 2(17):17ra19. doi:10.1126/scitranslmed.3000349

    Article  CAS  Google Scholar 

  4. Lane SW, Scadden DT, Gilliland DG (2009) The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood 114(6):1150–1157. doi:10.1182/blood-2009-01-202606

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Blanco TM, Mantalaris A, Bismarck A, Panoskaltsis N (2010) The development of a three-dimensional scaffold for ex vivo biomimicry of human acute myeloid leukaemia. Biomaterials 31(8):2243–2251. doi:10.1016/j.biomaterials.2009.11.094

    Article  PubMed  CAS  Google Scholar 

  6. Ishikawa FYS, Saito Y, Hijikata A, Kitamura H, Tanaka S, Nakamura R, Tanaka T, Tomiyama H, Saito N, Fukata M, Miyamoto T, Lyons B, Ohshima K, Uchida N, Taniguchi S, Ohara O, Akashi K, Harada M, Shultz LD (2007) Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol 25:1315–1321

    Article  PubMed  CAS  Google Scholar 

  7. Zeng Z, Shi YX, Samudio IJ, Wang RY, Ling X, Frolova O, Levis M, Rubin JB, Negrin RR, Estey EH, Konoplev S, Andreeff M, Konopleva M (2009) Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood 113(24):6215–6224. doi:10.1182/blood-2008-05-158311

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Jawad MSC, Mony U, Grundy M, Russell NH, Pallis M (2010) Analysis of factors that affect in vitro chemosensitivity of leukaemic stem and progenitor cells to gemtuzumab ozogamicin (Mylotarg) in acute myeloid leukaemia. Leukemia 24:74–80

    Article  PubMed  CAS  Google Scholar 

  9. Parmar A, Marz S, Rushton S, Holzwarth C, Lind K, Kayser S, Dohner K, Peschel C, Oostendorp RA, Gotze KS (2011) Stromal niche cells protect early leukemic FLT3-ITD+ progenitor cells against first-generation FLT3 tyrosine kinase inhibitors. Cancer Res 71(13):4696–4706. doi:10.1158/0008-5472.CAN-10-4136

    Article  PubMed  CAS  Google Scholar 

  10. Lane SW, Wang YJ, Lo Celso C, Ragu C, Bullinger L, Sykes SM, Ferraro F, Shterental S, Lin CP, Gilliland DG, Scadden DT, Armstrong SA, Williams DA (2011) Differential niche and Wnt requirements during acute myeloid leukemia progression. Blood 118(10):2849–2856. doi:10.1182/blood-2011-03-345165

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Guo YBS, Luo M (1999) Study of thrombopoietin and its recptor in the acute myeloid leukemia. Zhonghua Xue Ye Xue Za Zhi 20:120–123

    PubMed  CAS  Google Scholar 

  12. Schroder JK, Kolkenbrock S, Tins J, Kasimir-Bauer S, Seeber S, Schutte J (2000) Analysis of thrombopoietin receptor (c-mpl) mRNA expression in de novo acute myeloid leukemia. Leuk Res 24(5):401–409

    Article  PubMed  CAS  Google Scholar 

  13. Li L, Xie T (2005) Stem cell niche: structure and function. Annu Rev Cell Dev Biol 21:605–631. doi:10.1146/annurev.cellbio.21.012704.131525

    Article  PubMed  CAS  Google Scholar 

  14. Adams GB, Scadden DT (2006) The hematopoietic stem cell in its place. Nat Immunol 7(4):333–337

    Article  PubMed  CAS  Google Scholar 

  15. LE Wilson A, Trumpp A (2009) Balancing dormant and self-renewing hematopoietic stem cells. Curr Opin Genet Dev 19:461–468

    Article  PubMed  CAS  Google Scholar 

  16. Yoshihara HAF, Hosokawa K, Hagiwara T, Takubo K, Nakamura Y, Gomei Y, Iwasaki H, Matsuoka S, Miyamoto K, Miyazaki H, Takahashi T, Suda T (2007) Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 1:685–697

    Article  PubMed  CAS  Google Scholar 

  17. Matsumura IKY, Kato T, Ikeda H, Ishikawa J, Horikawa Y, Hashimoto K, Moriyama Y, Tsujimura T, Nishiura T (2005) Growth response of acute myeloblastic leukemia cells to recombinant human thrombopoietin. Blood 86:703–709

    Google Scholar 

  18. Corazza FHC, D’Hondt S, Ferster A, Kentos A, Benoît Y, Sariban E (2006) Circulating thrombopoietin as an in vivo growth factor for blast cells in acute myeloid leukemia. Blood 107:2525–2530

    Article  PubMed  CAS  Google Scholar 

  19. Kaushansky K (2005) The molecular mechanisms that control thrombopoiesis. J Clin Invest 115:3339–3347

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Sitnicka E, Lin N, Priestley GV, Fox N, Broudy VC, Wolf NS, Kaushansky K (1996) The effect of thrombopoietin on the proliferation and differentiation of murine hematopoietic stem cells. Blood 87(12):4998–5005

    PubMed  CAS  Google Scholar 

  21. Ku H, Yonemura Y, Kaushansky K, Ogawa M (1996) Thrombopoietin, the ligand for the Mpl receptor, synergizes with steel factor and other early acting cytokines in supporting proliferation of primitive hematopoietic progenitors of mice. Blood 87(11):4544–4551

    PubMed  CAS  Google Scholar 

  22. Fox N, Priestley G, Papayannopoulou T, Kaushansky K (2002) Thrombopoietin expands hematopoietic stem cells after transplantation. J Clin Invest 110(3):389–394. doi:10.1172/JCI15430

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Wu YX, Wang HY, Wang W (2010) Measurement and clinical significance of serum TPO and LDH levels in patients with myelodysplastic syndrome and acute leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi 18(3):671–674

    PubMed  CAS  Google Scholar 

  24. Wetzler MBM, Bernstein SH, Blumenson L, Stewart C, Barcos M, Mrózek K, Block AW, Herzig GP, Bloomfield CD (1997) Expression of c-mpl mRNA, the receptor for thrombopoietin, in acute myeloid leukemia blasts identifies a group of patients with poor response to intensie chemotherapy. Clin Oncol 15:2262–2268

    CAS  Google Scholar 

  25. Arai F, Yoshihara H, Hosokawa K, Nakamura Y, Gomei Y, Iwasaki H, Suda T (2009) Niche regulation of hematopoietic stem cells in the endosteum. Ann N Y Acad Sci 1176:36–46. doi:10.1111/j.1749-6632.2009.04561.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was funded by grants from Military Natural Science foundation of China (06-MB238), Natural Science fund of Chongqing (2009BB5151) and National Natural Science Foundation of China (81000195).

Conflict of Interest

All authors have no conflict of interest to state.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kong Pei-Yan.

Additional information

Zeng Dong-Feng and Zhang Yong should be regard as the co-first author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong-Feng, Z., Ting, L., Yong, Z. et al. The TPO/c-MPL Pathway in the Bone Marrow may Protect Leukemia Cells from Chemotherapy in AML Patients. Pathol. Oncol. Res. 20, 309–317 (2014). https://doi.org/10.1007/s12253-013-9696-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-013-9696-z

Keywords

Navigation