Skip to main content

Advertisement

Log in

Potato Starch: a Review of Physicochemical, Functional and Nutritional Properties

  • Invited Review
  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

With a rapid increase in type-2 diabetes mellitus (T2DM) throughout the world in recent years, it has also become a major human health issue. Today, more than one third of the world's population is living with diabetes or prediabetes. Expenditures associated with medical treatment constitutes a huge financial burden on our society and costs billions of taxpayers’ dollars. Although the etiology is multifactorial, diet has been identified as the single most important contributing environmental factor to the development of this disease. Potatoes are an important agricultural commodity as a staple food and for many industrial uses. Although native potato starch is resistant to digestion, it is rapidly digestible in fully cooked potatoes. It results in the high glycemic index (GI) of most processed potato products, which are not suitable for people with T2DM and obesity. Due to the complexity of foods containing different chemical compositions, multiphase structures, and composite systems, we know little about the structural characteristics of starch in cooked and cooled potato products, how food processing can influences the structure of starch to create nutritional benefits, and the mechanism of low GI potato-based foods. In this chapter, we will address the role of potato starch chemistry and structure on nutritional properties of potato and how changes in the physical, chemical and nutritional properties of starch occur as they are subjected to different treatment conditions for potato food processing and nutrition.

Resumen

Con un rápido incremento en diabetes mellitus (T2DM) en el mundo en años recientes, también se ha convertido en un tema importante en la salud humana. Actualmente hay más de 1/3 de la población mundial viviendo con diabetes o con prediabetes. Los gastos asociados con el tratamiento médico constituyen una enorme carga financiera en nuestra sociedad, y cuesta billones de dólares de nuestros impuestos. Aun cuando la etiología es multifactorial, se ha identificado a la dieta como el único factor ambiental más importante que contribuye al desarrollo de la enfermedad. La papa es un producto agrícola importante como un alimento básico y para muchos usos industriales. Aun cuando el almidón original de la papa es resistente a la digestión, es fácilmente digerible en papas cocinadas completamente. Esto resulta en un índice glicémico alto (GI) en la mayoría de los productos procesados de la papa, no deseable para las personas con T2DM y obesidad. Debido a la complejidad de los alimentos en diferentes composiciones químicas, con estructura multifase y un sistema compuesto, sabemos poco acerca de las características estructurales del almidón en papa cocinada y enfriada. Tampoco entendemos como el procesamiento de la comida influencia la estructura deseable del almidón para beneficio nutricional, ni entendemos el mecanismo de bajo GI derivado de algunos alimentos de papa. En este capítulo, mencionaremos el papel de la química del almidón de la papa y la estructura de las propiedades nutricionales de la papa, y cómo los cambios en las propiedades físicas químicas y nutricionales del almidón se presentan a medida que se someten a diferentes condiciones de tratamientos para el procesamiento y nutrición de alimentos de la papa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmadi-Abhari, S., A.J.J. Woortman, A.A.C.M. Oudhuis, R.J. Hamer, and K. Loos. 2013. The influence of amylose-LPC complex formation on the susceptibility of wheat starch to amylase. Carbohydrate Polymers 97 (2): 436–440.

    Article  CAS  PubMed  Google Scholar 

  • Akilen, R., N. Deljoomanesh, S. Hunschede, C.E. Smith, M.U. Arshad, R. Kubant, and G.H. Anderson. 2016. The effects of potatoes and other carbohydrate side dishes consumed with meat on food intake, glycemia and satiety response in children. Nutrition & Diabetes 6: e195.

    Article  CAS  Google Scholar 

  • Alvani, K., X. Qi, R.F. Tester, and C.E. Snape. 2011. Physico-chemical properties of potato starches. Food Chemistry 125 (3): 958–965.

    Article  CAS  Google Scholar 

  • Andersson, M., M. Melander, P. Pojmark, H. Larsson, L. Bülow, and P. Hofvander. 2006. Targeted gene suppression by RNA interference: An efficient method for production of high-amylose potato lines. Journal of Biotechnology 123 (2): 137–148.

    Article  CAS  PubMed  Google Scholar 

  • Ashwar, B.A., A. Gani, A. Shah, I. Wani, F. Masoodi Ahmed, and Ahmad. 2015. Preparation, health benefits and applications of resistant starch—A review. Starch/Stärke 68 (3–4): 287–301.

    Google Scholar 

  • Avebe. (2018). "Waxy potato starch: Eliane™." https://www.avebe.com/producten/eliane/. Accessed 26 July 2018.

  • Ballance, S., S.H. Knutsen, Ø.W. Fosvold, M. Wickham, C.D.-T. Trenado, and J. Monro. 2018. Glyceamic and insulinaemic response to mashed potato alone, or with broccoli, broccoli fibre or cellulose in healthy adults. European Journal of Nutrition 57 (1): 199–207.

    Article  CAS  PubMed  Google Scholar 

  • Blennow, A., A.M. Bay-Smidt, B. Wischmann, C.E. Olsen, and B.L. Møller. 1998. The degree of starch phosphorylation is related to the chain length distribution of the neutral and the phosphorylated chains of amylopectin. Carbohydrate Research 307 (1): 45–54.

    Article  CAS  Google Scholar 

  • Blennow, A., B. Wischmann, K. Houborg, T. Ahmt, K. Jørgensen, S.B. Engelsen, O. Bandsholm, and P. Poulsen. 2005. Structure function relationships of transgenic starches with engineered phosphate substitution and starch branching. International Journal of Biological Macromolecules 36 (3): 159–168.

    Article  CAS  PubMed  Google Scholar 

  • Bordoloi, A., L. Kaur, and J. Singh. 2012. Parenchyma cell microstructure and textural characteristics of raw and cooked potatoes. Food Chemistry 133 (4): 1092–1100.

    Article  CAS  Google Scholar 

  • Brand-Miller, J.C., S.H.A. Holt, D.B. Pawlak, and J. McMillan. 2002. Glycemic index and obesity. The American Journal of Clinical Nutrition 76 (suppl): 281S–285S.

    Article  CAS  PubMed  Google Scholar 

  • Cai, L., and Y.-C. Shi. 2010. Structure and digestibility of crystalline short-chain amylose from debranched waxy wheat, waxy maize, and waxy potato starches. Carbohydrate Polymers 79 (4): 1117–1123.

    Article  CAS  Google Scholar 

  • Chiu, C.-W., and D. Solarek. 2009. Chapter 17 - Modification of Starches. In Starch (Third Edition). J. BeMiller and R. Whistler, 629–655. San Diego: Academic Press.

    Google Scholar 

  • Chung, H.-J., D.-H. Shin, and S.-T. Lim. 2008. In vitro starch digestibility and estimated glycemic index of chemically modified corn starches. Food Research International 41 (6): 579–585.

    Article  CAS  Google Scholar 

  • Cohen, R., Y. Orlova, M. Kovalev, Y. Ungar, and E. Shimoni. 2008. Structural and functional properties of amylose complexes with Genistein. Journal of Agricultural and Food Chemistry 56 (11): 4212–4218.

    Article  CAS  PubMed  Google Scholar 

  • Conlon, M.A., C.A. Kerr, C.S. McSweeney, R.A. Dunne, J.M. Shaw, S. Kang, A.R. Bird, M.K. Morell, T.J. Lockett, P.L. Molloy, A. Regina, S. Toden, J.M. Clarke, and D.L. Topping. 2012. Resistant starches protect against colonic DNA damage and alter microbiota and gene expression in rats fed a Western diet. The Journal of Nutrition 142 (5): 832–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Rosa Zavareze, E., and A.R.G. Dias. 2011. Impact of heat-moisture treatment and annealing in starches: A review. Carbohydrate Polymers 83 (2): 317–328.

    Article  CAS  Google Scholar 

  • den Besten, G., K. van Eunen, A.K. Groen, K. Venema, D.-J. Reijngoud, and B.M. Bakker. 2013. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research 54: 2325–2340.

    Article  CAS  Google Scholar 

  • Diaz-Toledo, C., A.C. Kurilich, R. Re, M.S.J. Wickham, and L.C. Chambers. 2016. Satiety impact of different potato products compared to pasta control. Journal of the American College of Nutrition 35 (6): 537–543.

    Article  CAS  PubMed  Google Scholar 

  • Dupuis, J.H., Z.-H. Lu, R.Y. Yada, and Q. Liu. 2016. The effect of thermal processing and storage on the physicochemical properties and in vitro digestibility of potatoes. International Journal of Food Science and Technology 51: 2233–2241.

    Article  CAS  Google Scholar 

  • Dupuis, J.H., T. Rong, R.Y. Yada, and Q. Liu. 2017. Physicochemical properties and in vitro digestibility of potato starch after inclusion with vanillic acid. LWT - Food Science and Technology 85: 218–224.

    Article  CAS  Google Scholar 

  • Eelderink, C., M. Schepers, T. Preston, R.J. Vonk, L. Oudhuis, and M.G. Priebe. 2012. Slowly and rapidly digestible starchy foods can elicit a similar glycemic response because of differential tissue glucose uptake in healthy men. American Journal of Clinical Nutrition 96: 1017–1024.

    Article  CAS  PubMed  Google Scholar 

  • Ellis, R.P., M.P. Cochrane, M.F.B. Dale, C.M. Duffus, A. Lynn, I.M. Morrison, R.D.M. Prentice, J.S. Swanston, and S.A. Tiller. 1998. Starch production and industrial use. Journal of the Science of Food and Agriculture 77 (3): 289–311.

    Article  CAS  Google Scholar 

  • Emenaker, N.J., and M.D. Basson. 1998. Short chain fatty acids inhibit human (SW1116) colon cancer cell invasion by reducing urokinase plasminogen activator activity and stimulating TIMP-1 and TIMP-2 activities, rather than via MMP modulation. Journal of Surgical Research 76 (1): 41–46.

    Article  CAS  PubMed  Google Scholar 

  • Emenaker, N.J., G.M. Calaf, D. Cox, M.D. Basson, and N. Qureshi. 2001. Short-chain fatty acids inhibit invasive human colon cancer by modulating uPA, TIMP-1, TIMP-2, mutant p53, Bcl-2, Bax, p21 and PCNA protein expression in an in vitro cell culture model. The Journal of Nutrition 131 (11): 3041S–3046S.

    Article  CAS  PubMed  Google Scholar 

  • Englyst, H.N., S.M. Kingman, and J.H. Cummings. 1992. Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition 46 (S2): S33–S50.

    PubMed  Google Scholar 

  • Erdmann, J., Y. Hebeisen, F. Lippl, S. Wagenpfeil, and V. Schusdziarra. 2007. Food intake and plasma ghrelin response during potato-, rice- and pasta-rich test meals. European Journal of Nutrition 46 (4): 196–203.

    Article  CAS  PubMed  Google Scholar 

  • Escarpa, A., M.C. González, M.D. Morales, and F. Saura-Calixto. 1997. An approach to the influence of nutrients and other food constituents on resistant starch formation. Food Chemistry 60 (4): 527–532.

    Article  CAS  Google Scholar 

  • Fernandes, G., A. Velangi, and T.M.S. Wolever. 2005. Glycemic index of potatoes commonly consumed in North America. Journal of the American Dietetic Association 105 (4): 557–562.

    Article  PubMed  Google Scholar 

  • Fernqvist, F., L. Ekelund, and S. Spendrup. 2015. Changing consumer intake of potato, a focus group study. British Food Journal 117 (1): 210–221.

    Article  Google Scholar 

  • Foster-Powell, K., S.H.A. Holt, and J.C. Brand-Miller. 2002. International table of glycemic index and glycemic load values: 2002. The American Journal of Clinical Nutrition 76: 5–56.

    Article  CAS  PubMed  Google Scholar 

  • Guilbot, A., and C. Mercier. 1985. Starch. The polysaccharides. G. O. Aspinall. New York: Academic Press, Inc..

    Google Scholar 

  • Guo, Z.-H., J.-W. Zhang, W. Di, and Z.H. Chen. 2008. Using RNAi technology to produce high-amylose potato plants. Scientia Agricultura Sinica 41 (2): 494–501.

    CAS  Google Scholar 

  • Han, J.-A., and J.N. BeMiller. 2007. Preparation and physical characteristics of slowly digesting modified food starches. Carbohydrate Polymers 67 (3): 366–374.

    Article  CAS  Google Scholar 

  • Hätönen, K.A., J. Virtamo, J.G. Eriksson, H.K. Sinkko, J.E. Sundvall, and L.M. Valsta. 2011. Protein and fat modify the glycaemic and insulinaemic responses to a mashed potato-based meal. British Journal of Nutrition 106 (2): 248–253.

    Article  CAS  PubMed  Google Scholar 

  • Henry, C.J.K., H.J. Lightowler, F.L. Kendall, and M. Storey. 2006. The impact of the addition of toppings/fillings on the glycaemic response to commonly consumed carbohydrate foods. European Journal of Clinical Nutrition 60: 763–769.

    Article  CAS  PubMed  Google Scholar 

  • Hofvander, P., M. Andersson, C.-T. Larsson, and H. Larsson. 2004. Field performance and starch characteristics of high-amylose potatoes obtained by antisense gene targeting of two branching enzymes. Plant Biotechnology Journal 2 (4): 311–320.

    Article  CAS  PubMed  Google Scholar 

  • Hong, J., X.-A. Zeng, Z. Han, and C.S. Brennan. 2018. Effect of pulsed electric fields treatment on the nanostructure of esterified potato starch and their potential glycemic digestibility. Innovative Food Science & Emerging Technologies 45: 438–446.

    Article  CAS  Google Scholar 

  • Hoover, R. 2010. The impact of heat-moisture treatment on molecular structures and properties of starches isolated from different botanical sources. Critical Reviews in Food Science and Nutrition 50 (9): 835–847.

    Article  CAS  PubMed  Google Scholar 

  • Hoover, R., and T. Vasanthan. 1993. The effect of annealing on the physicochemical properties of wheat, oat, potato and lentil starches. Journal of Food Biochemistry 17 (5): 303–325.

    Article  Google Scholar 

  • Hung, P.V., N.T.L. Phi, and T.T.V. Vy. 2012. Effect of debranching and storage condition on crystallinity and functional properties of cassava and potato starches. Starch/Stärke 64 (12): 964–971.

    Article  CAS  Google Scholar 

  • Hung, P.V., N.H. Phat, and N.T.L. Phi. 2013. Physicochemical properties and antioxidant capacity of debranched starch–ferulic acid complexes. Starch/Stärke 65: 382–389.

    Article  Google Scholar 

  • Hung, P.V., N.T.H. My, and N.T.L. Phi. 2014. Impact of acid and heat–moisture treatment combination on physicochemical characteristics and resistant starch contents of sweet potato and yam starches. Starch/Stärke 66 (11–12): 1013–1021.

    Article  CAS  Google Scholar 

  • Hung, P.V., N.L. Vien, and N.T.L. Phi. 2016. Resistant starch improvement of rice starches under a combination of acid and heat-moisture treatments. Food Chemistry 191: 67–73.

    Article  CAS  PubMed  Google Scholar 

  • Hung, P.V., N.T.M. Huong, N.T.L. Phi, and N.N.T. Tien. 2017. Physicochemical characteristics and in vitro digestibility of potato and cassava starches under organic acid and heat-moisture treatments. International Journal of Biological Macromolecules 95: 299–305.

    Article  CAS  PubMed  Google Scholar 

  • Jenkins, P.J., and A.M. Donald. 1995. The influence of amylose on starch granule structure. International Journal of Biological Macromolecules 17 (6): 315–321.

    Article  CAS  PubMed  Google Scholar 

  • Jiranuntakul, W., C. Puttanlek, V. Rungsardthong, S. Puncha-arnon, and D. Uttapap. 2011. Microstructural and physicochemical properties of heat-moisture treated waxy and normal starches. Journal of Food Engineering 104 (2): 246–258.

    Article  CAS  Google Scholar 

  • Jochym, K., J. Kapusniak, R. Barczynska, and K. Śliżewska. 2012. New starch preparations resistant to enzymatic digestion. Journal of the Science of Food and Agriculture 92 (4): 886–891.

    Article  CAS  PubMed  Google Scholar 

  • Juansang, J., C. Puttanlek, V. Rungsardthong, S. Puncha-arnon, and D. Uttapap. 2012. Effect of gelatinisation on slowly digestible starch and resistant starch of heat-moisture treated and chemically modified canna starches. Food Chemistry 131 (2): 500–507.

    Article  CAS  Google Scholar 

  • Kadam, S.S., S.S. Dhumal, and N.D. Jambhale. 1991. Structure, nutritional composition, and quality. Potato: Production, processing, and products. D. K. Salunkhe, S. S. Kadam and S. J. Jadhav. Boca Raton, FL, USA: CRC Press, Inc..

    Google Scholar 

  • Kalita, D., D.G. Holm, D.V. LaBarbera, J.M. Petrash, and S.S. Jayanty. 2018. Inhibition of α-glucosidase, α-amylase, and aldose reductase by potato polyphenolic compounds. PLoS One 13 (1): e0191025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapelko-Żeberska, M., T. Zięba, W. Pietrzak, and A. Gryszkin. 2016. Effect of citric acid esterification conditions on the properties of the obtained resistant starch. International Journal of Food Science & Technology 51 (7): 1647–1654.

    Article  CAS  Google Scholar 

  • Karlsson, M.E., A.M. Leeman, I.M.E. Björck, and A.-C. Eliasson. 2007. Some physical and nutritional characteristics of genetically modified potatoes varying in amylose/amylopectin ratios. Food Chemistry 100 (1): 136–146.

    Article  CAS  Google Scholar 

  • Kaur, L., J. Singh, O.J. McCarthy, and H. Singh. 2007. Physico-chemical, rheological and structural properties of fractionated potato starches. Journal of Food Engineering 82 (3): 383–394.

    Article  CAS  Google Scholar 

  • Kawai, K., S. Takato, T. Sasaki, and K. Kajiwara. 2012. Complex formation, thermal properties, and in-vitro digestibility of gelatinized potato starch–fatty acid mixtures. Food Hydrocolloids 27 (1): 228–234.

    Article  CAS  Google Scholar 

  • Kittisuban, P., B.-H. Lee, M. Suphantharika, and B.R. Hamaker. 2014. Slow glucose release property of enzyme-synthesized highly branched maltodextrins differs among starch sources. Carbohydrate Polymers 107: 182–191.

    Article  CAS  PubMed  Google Scholar 

  • Le Blay, G.M., C.D. Michel, H.M. Blottière, and C.J. Cherbut. 2003. Raw potato starch and short-chain fructo-oligosaccharides affect the composition and metabolic activity of rat intestinal microbiota differently depending on the caecocolonic segment involved. Journal of Applied Microbiology 94 (2): 312–320.

    Article  PubMed  Google Scholar 

  • Leach, H.W. 1959. Structure of starch granules. I. Swelling and solubility patterns of various starches. Cereal Chemistry 36: 534–544.

    CAS  Google Scholar 

  • Lee, S.Y., K.Y. Lee, and H.G. Lee. 2018. Effect of different pH conditions on the in vitro digestibility and physicochemical properties of citric acid-treated potato starch. International Journal of Biological Macromolecules 107 (A): 1235–1241.

    Article  CAS  PubMed  Google Scholar 

  • Leeman, A.M., M.E. Karlsson, A.-C. Eliasson, and I.M.E. Björck. 2006. Resistant starch formation in temperature treated potato starches varying in amylose/amylopectin ratio. Carbohydrate Polymers 65 (3): 306–313.

    Article  CAS  Google Scholar 

  • Li, X., M. Miao, H. Jiang, J. Xue, B. Jiang, T. Zhang, Y. Gao, and Y. Jia. 2014. Partial branching enzyme treatment increases the low glycaemic property and α-1,6 branching ratio of maize starch. Food Chemistry 164: 502–509.

    Article  CAS  PubMed  Google Scholar 

  • Lisinska, G., and W. Leszczynski. 1989. Potato science and technology. Netherlands: Springer.

    Google Scholar 

  • Liu, Q., E. Weber, V. Currie, and R. Yada. 2003. Physicochemical properties of starches during potato growth. Carbohydrate Polymers 51 (2): 213–221.

    Article  CAS  Google Scholar 

  • Liu, Q., R. Tarn, D. Lynch, and N.M. Skjodt. 2007. Physicochemical properties of dry matter and starch from potatoes grown in Canada. Food Chemistry 105: 897–907.

    Article  CAS  Google Scholar 

  • Liu, J., J. Ming, W. Li, and G. Zhao. 2012. Synthesis, characterisation and in vitro digestibility of carboxymethyl potato starch rapidly prepared with microwave-assistance. Food Chemistry 133 (4): 1196–1205.

    Article  CAS  Google Scholar 

  • Lopez-Rubio, A., B.M. Flanagan, E.P. Gilbert, and M.J. Gidley. 2008. A novel approach for calculating starch crystallinity and its correlation with double helix content: A combined XRD and NMR study. Biopolymers 89 (9): 761–768.

    Article  CAS  PubMed  Google Scholar 

  • Lu, Z.-H., E. Donner, R.Y. Yada, and Q. Liu. 2016. Physicochemical properties and in vitro starch digestibility of potato starch/protein blends. Carbohydrate Polymers 154: 214–222.

    Article  CAS  PubMed  Google Scholar 

  • Ludwig, D.S. 2002. The glycemic index: Physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. Journal of the American Medical Association 287: 2414–2423.

    Article  CAS  PubMed  Google Scholar 

  • Lv, X., F. Ye, J. Li, J. Ming, and G. Zhao. 2016. Synthesis and characterization of a novel antioxidant RS4 by esterifying carboxymethyl sweetpotato starch with quercetin. Carbohydrate Polymers 152: 317–326.

    Article  CAS  PubMed  Google Scholar 

  • Mattila-Sandholm, T., P. Myllärinen, R. Crittenden, G. Mogensen, R. Fondén, and M. Saarela. 2002. Technological challenges for future probiotic foods. International Dairy Journal 12 (2): 173–182.

    Article  CAS  Google Scholar 

  • McComber, D.R., E.M. Osman, and R.A. Lohnes. 1988. Factors related to potato mealiness. Journal of Food Science 53 (5): 1423–1425.

    Article  Google Scholar 

  • McComber, D.R., H.T. Horner, M.A. Chamberlin, and D.F. Cox. 1994. Potato cultivar differences associated with mealiness. Journal of Agricultural and Food Chemistry 42 (11): 2433–2439.

    Article  CAS  Google Scholar 

  • Mishra, S., J. Monro, and D. Hedderley. 2008. Effect of processing on slowly digestible starch and resistant starch in potato. Starch/Stärke 60: 500–507.

    Article  CAS  Google Scholar 

  • Murphy, M.M., J.S. Douglass, and A. Birkett. 2008. Resistant starch intakes in the United States. Journal of the American Dietetic Association 108 (1): 67–78.

    Article  PubMed  Google Scholar 

  • Panyoo, A.E., and M.N. Emmambux. 2016. Amylose–lipid complex production and potential health benefits: A mini-review. Starch/Stärke 69 (7–8): 1600203.

    Google Scholar 

  • Park, S.H., Y. Na, J. Kim, S.D. Kang, and K.-H. Park. 2018. Properties and applications of starch modifying enzymes for use in the baking industry. Food Science and Biotechnology 27 (2): 299–312.

    Article  CAS  PubMed  Google Scholar 

  • Perera, C., and H. Hoover. 1998. The reactivity of porcine pancreatic alpha-amylase towards native, defatted and heat-moisture treated potato starches before and after hydroxypropylation. Starch/Stärke 50 (5): 206–213.

    Article  CAS  Google Scholar 

  • Pfister, B., and Zeeman, S.C. 2016. Formation of starch in plant cells. Cellular and Molecular Life Sciences 73 (14): 2781–2807.

  • Pycia, K., L. Juszczak, D. Gałkowska, and M. Witczak. 2012. Physicochemical properties of starches obtained from polish potato cultivars. Starch/Stärke 64 (2): 105–114.

    Article  CAS  Google Scholar 

  • Ramdath, D.D., E. Padhi, A. Hawke, T. Sivaramalingam, and R. Tsao. 2014. The glycemic index of pigmented potatoes is related to their polyphenol content. Food & Function 5 (5): 909–915.

    Article  CAS  Google Scholar 

  • Remya, R., A.N. Jyothi, and J. Sreekumar. 2017. Comparative study of RS4 type resistant starches derived from cassava and potato starches via octenyl succinylation. Starch/Stärke 69 (7–8): 1600264.

    Article  CAS  Google Scholar 

  • Ring, S.G. 1985. Some studies on starch gelation. Starch/Stärke 37 (3): 80–83.

    Article  CAS  Google Scholar 

  • Rodríguez-Cabezas, M.E., D. Camuesco, B. Arribas, N. Garrido-Mesa, M. Comalada, E. Bailón, M. Cueto-Sola, P. Utrilla, E. Guerra-Hernández, C. Pérez-Roca, J. Gálvez, and A. Zarzuelo. 2010. The combination of fructooligosaccharides and resistant starch shows prebiotic additive effects in rats. Clinical Nutrition 29 (6): 832–839.

    Article  CAS  PubMed  Google Scholar 

  • Saibene, D., and K. Seetharaman. 2010. Amylose involvement in the amylopectin clusters of potato starch granules. Carbohydrate Polymers 82 (2): 376–383.

    Article  CAS  Google Scholar 

  • Sang, Y., P.A. Seib, A.I. Herrera, O. Prakash, and Y.-C. Shi. 2010. Effects of alkaline treatment on the structure of phosphorylated wheat starch and its digestibility. Food Chemistry 118 (2): 323–327.

    Article  CAS  Google Scholar 

  • Sasaki, T., I. Sotome, and H. Okadome. 2015. In vitro starch digestibility and in vivo glucose response of gelatinized potato starch in the presence of non-starch polysaccharides. Starch/Stärke 67 (5–6): 415–423.

    Article  CAS  Google Scholar 

  • Schirmer, M., A. Höchstötter, M. Jekle, E. Arendt, and T. Becker. 2013. Physicochemical and morphological characterization of different starches with variable amylose/amylopectin ratio. Food Hydrocolloids 32 (1): 52–63.

    Article  CAS  Google Scholar 

  • Schwall, G.P., R. Safford, R.J. Westcott, R. Jeffcoat, A. Tayal, Y.-C. Shi, M.J. Gidley, and S.A. Jobling. 2000. Production of very-high-amylose potato starch by inhibition of SBE a and B. Nature Biotechnology 18: 551–554.

    Article  CAS  PubMed  Google Scholar 

  • Schwingshackl, L., C. Schwedhelm, G. Hoffmann, and H. Boeing. 2018. Potatoes and risk of chronic disease: A systematic review and dose–response meta-analysis. European Journal of Nutrition.

  • Shin, S., J. Byun, K.H. Park, and T.W. Moon. 2004. Effect of partial acid hydrolysis and heat-moisture treatment on formation of resistant tuber starch. Cereal Chemistry 81 (2): 194–198.

    Article  CAS  Google Scholar 

  • Singh, N., J. Singh, L. Kaur, N.S. Sodhi, and B.S. Gill. 2003. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry 81 (2): 219–231.

    Article  CAS  Google Scholar 

  • Singh, N., D. Chawla, and J. Singh. 2004. Influence of acetic anhydride on physicochemical, morphological and thermal properties of corn and potato starch. Food Chemistry 86 (4): 601–608.

    Article  CAS  Google Scholar 

  • Singh, J., L. Kaur, and O.J. McCarthy. 2007. Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—A review. Food Hydrocolloids 21 (1): 1–22.

    Article  CAS  Google Scholar 

  • Singh, J., R. Colussi, O.J. McCarthy, and L. Kaur. 2016. Chapter 8 - Potato Starch and Its Modification. In Advances in Potato Chemistry and Technology (Second Edition). J. Singh and L. Kaur, 195–247. San Diego, Academic Press.

  • Sweedman, M.C., M.J. Tizzotti, C. Schäfer, and R.G. Gilbert. 2013. Structure and physicochemical properties of octenyl succinic anhydride modified starches: A review. Carbohydrate Polymers 92 (1): 905–920.

    Article  CAS  PubMed  Google Scholar 

  • Tester, R.F., and W.R. Morrison. 1990. Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chemistry 67 (6): 551–557.

    CAS  Google Scholar 

  • Tian, J., S. Chen, C. Wu, J. Chen, X. Du, J. Chen, D. Liu, and X. Ye. 2016. Effects of preparation methods on potato microstructure and digestibility: An in vitro study. Food Chemistry 211: 564–569.

    Article  CAS  PubMed  Google Scholar 

  • Tufvesson, F., V. Skrabanja, I. Björck, H.L. Elmståhl, and A.-C. Eliasson. 2001. Digestibility of starch systems containing amylose–glycerol monopalmitin complexes. LWT - Food Science and Technology 34 (3): 131–139.

    Article  CAS  Google Scholar 

  • Tufvesson, F., M. Wahlgren, and A.-C. Eliasson. 2003. Formation of amylose-lipid complexes and effects of temperature treatment. Part 2. Fatty acids. Starch/Stärke 55 (3–4): 138–149.

    Article  CAS  Google Scholar 

  • Vanier, N.L., S.L.M. El Halal, A.R.G. Dias, and E. da Rosa Zavareze. 2017. Molecular structure, functionality and applications of oxidized starches: A review. Food Chemistry 221: 1546–1559.

    Article  CAS  PubMed  Google Scholar 

  • Varatharajan, V., R. Hoover, Q. Liu, and K. Seetharaman. 2010. The impact of heat-moisture treatment on the molecular structure and physicochemical properties of normal and waxy potato starches. Carbohydrate Polymers 81 (2): 466–475.

    Article  CAS  Google Scholar 

  • Visser, R.G.F., I. Somhorst, G.J. Kuipers, N.J. Ruys, W.J. Feenstra, and E. Jacobsen. 1991. Inhibition of the expression of the gene for granule-bound starch synthase in potato by antisense constructs. Molecular and General Genetics MGG 225 (2): 289–296.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., C. Li, L. Copeland, Q. Niu, and S. Wang. 2015. Starch retrogradation: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 14 (5): 568–585.

    Article  CAS  Google Scholar 

  • Waterschoot, J., S.V. Gomand, E. Fierens, and J.A. Delcour. 2015. Production, structure, physicochemical and functional properties of maize, cassava, wheat, potato and rice starches. Starch/Stärke 67 (1–2): 14–29.

    Article  CAS  Google Scholar 

  • Wepner, B., E. Berghofer, E. Miesenberger, K. Tiefenbacher, and P.N.K. Ng. 2000. Citrate starch — Application as resistant starch in different food systems. Starch/Stärke 51 (10): 354–361.

    Article  Google Scholar 

  • Wickramasinghe, H.A.M., A. Blennow, and T. Noda. 2009. Physico-chemical and degradative properties of in-planta re-structured potato starch. Carbohydrate Polymers 77 (1): 118–124.

    Article  CAS  Google Scholar 

  • Woo, K.S., and P.A. Seib. 2002. Cross-linked resistant starch: Preparation and properties. Cereal Chemistry 79 (6): 819–825.

    Article  CAS  Google Scholar 

  • Xia, H., Y. Li, and Q. Gao. 2016. Preparation and properties of RS4 citrate sweet potato starch by heat-moisture treatment. Food Hydrocolloids 55: 172–178.

    Article  CAS  Google Scholar 

  • Xie, X., and Q. Liu. 2004. Development and physicochemical characterization of new resistant citrate starch from different corn starches. Starch/Stärke 56 (8): 364–370.

    Article  CAS  Google Scholar 

  • Xie, Y.-Y., X.-P. Hu, Z.-Y. Jin, X.-M. Xu, and H.-Q. Chen. 2014a. Effect of repeated retrogradation on structural characteristics and in vitro digestibility of waxy potato starch. Food Chemistry 163: 219–225.

    Article  CAS  PubMed  Google Scholar 

  • Xie, Y.-Y., X.-P. Hu, Z.-Y. Jin, X.-M. Xu, and H.-Q. Chen. 2014b. Effect of temperature-cycled retrogradation on in vitro digestibility and structural characteristics of waxy potato starch. International Journal of Biological Macromolecules 67: 79–84.

    Article  CAS  PubMed  Google Scholar 

  • Yang, L., B. Zhang, J. Yi, J. Liang, Y. Liu, and L.-M. Zhang. 2013. Preparation, characterization, and properties of amylose-ibuprofen inclusion complexes. Starch/Stärke 65 (7–8): 593–602.

    Article  CAS  Google Scholar 

  • Ze, X., S.H. Duncan, P. Louis, and H.J. Flint. 2012. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. The ISME Journal 6 (8): 1535–1543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, X., M. Andersson, and R. Andersson. 2018. Resistant starch and other dietary fiber components in tubers from a high-amylose potato. Food Chemistry 251: 58–63.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, F., Q. Liu, H. Zhang, Q. Chen, and B. Kong. 2016. Potato starch oxidation induced by sodium hypochlorite and its effect on functional properties and digestibility. International Journal of Biological Macromolecules 84: 410–417.

    Article  CAS  PubMed  Google Scholar 

  • Zięba, T., M. Kapelko, and A. Szumny. 2013. Effect of preparation method on the properties of potato starch acetates with an equal degree of substitution. Carbohydrate Polymers 94 (1): 193–198.

    Article  CAS  PubMed  Google Scholar 

  • Zobel, H.F. 1988. Molecules to granules: A comprehensive starch review. Starch/Stärke 40 (2): 44–50.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dupuis, J.H., Liu, Q. Potato Starch: a Review of Physicochemical, Functional and Nutritional Properties. Am. J. Potato Res. 96, 127–138 (2019). https://doi.org/10.1007/s12230-018-09696-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-018-09696-2

Keywords

Navigation