Skip to main content
Log in

Phylogeny and Evolution in Cariceae (Cyperaceae): Current Knowledge and Future Directions

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

The goal of this study was to review the impact of DNA sequence analyses on our understanding of Cariceae phylogeny, classification and evolution. To explore character evolution, 105 taxa from four different studies were included in an nrDNA ITS + ETS 1f analysis of all recognized genera (Carex, Cymophyllus, Kobresia, Schoenoxiphium, Uncinia) and Carex subgenera (Carex, Psyllophora, Vignea, Vigneastra). As in previous analyses, four major Cariceae clades were recovered: (1) a “Core Carex Clade” (subg. Carex, Vigneastra, Psyllophora p.p); (2) A “Vignea Clade” (subg. Vignea, Psyllophora p.p.); (3) a “Schoenoxiphium Clade” (Schoenoxiphium, subg. Psyllophora p.p.), and (4) a “Core Unispicate Clade” (Uncinia, Kobresia, subg. Psyllophora p.p.). All studies provide strong support (86–100% BS) for the Core Carex and Vignea Clades, but only weak to moderate support (<50%–78% BS) for the Core Unispicate and Schoenoxiphium Clades. The relationships of these groups are unresolved. Studies suggest that Carex is either paraphyletic with respect to all Cariceae genera or to all genera except Schoenoxiphium. Kobresia is a grade, but Uncinia and possibly Schoenoxiphium are monophyletic. The monotypic Cymophyllus is indistinct from Carex subg. Psyllophora species. Character analyses indicate that inflorescence proliferation and reduction have occurred in all major clades, and that the Cariceae’s unisexual flowers have evolved from perfect flowers. The ancestor to Cariceae possessed a multispicate inflorescence with cladoprophylls and female spikelets with tristigmatic gynoecia and closed utricles. This morphology is most similar to extant Carex subg. Carex species, which contradicts the nearly unanimous assumption that the highly compound inflorescences of Schoenoxiphium are primitive. Since taxonomic sampling and statistical support for phylogenies have generally been poor, we advocate the temporary maintenance of the four traditional Carex subgenera with androgynous unispicate species placed within subg. Psyllophora and dioecious and gynaecandrous unispicate species distributed amongst subgenera Carex and Vignea. A collective effort focused on developing new nuclear markers, on increasing taxonomic and geographic sampling, and on studying development within the context of phylogeny, is needed to develop a phylogenetic classification of Cariceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Literature Cited

  • Aiken, S.G., R.L. Boles & M. J. Dallwitz. 1999. Carex (Dill.) L. Cyperaceae of the Canadian Arctic Archipelago: Descriptions, Illustrations, Identification, and Information Retrieval. Version: 6th November 2000. http://www.mun.ca/biology/delta/arcticf/cyp/www/cyca.htm.

  • Alvarez, I. & J. F. Wendel. 2003. Ribosomal ITS sequences and plant phylogenetic inference. Molec. Phylogenet. Evol. 29: 417–434.

    Article  PubMed  CAS  Google Scholar 

  • Bailey, L. H. 1886. A preliminary synopsis of North American carices. Proc. Am. Acad. Arts 3: 59–157.

    Google Scholar 

  • Ball, P. W. 1990. Some aspects of the phytogeography of Carex. Can. J. Bot. 68: 1462–1472.

    Google Scholar 

  • ————, A. A. Reznicek & D. A. Murray. 2002. Cyperaceae Jussieu. Pp. 1–608 in Flora of North America Editorial Committee (ed.), Flora of North America, North of Mexico, Vol. 23. Oxford University Press, Oxford.

    Google Scholar 

  • Blaser, H.W. 1944. Studies in the morphology of the Cyperaceae. II. The prophyll. Am. J. Bot. 31: 53–64.

    Article  Google Scholar 

  • Chater, A. O. 1980. Carex. Pp. 290–323 in T. G. Tutin, V. H. Heywood, N. A. Burges, D. M. Moore, S. M. Waters & D. A. Webb (eds.), Flora Europaea, Vol. 5. Cambridge University Press, Cambridge.

    Google Scholar 

  • ————. 1994. Carex. Pp. 464–473 in G. Davidse, M. Sousa. S. & A. O. Chater (eds.), Flora Mesoamericana. Vol. 6. Alismataceae a Cyperaceae. Universidad Nacional Autonoma de Mexico, Instituto Biologia, Missouri Botanical Garden, The Natural History Museum, London.

  • Clarke, C. B. 1883. On Hemicarex, Benth., and its allies. J. Linn. Soc., Bot. 20: 374–403.

    Google Scholar 

  • Croizat, L. 1952. Manual of phytogeography or an account of plant-dispersal throughout the world. Uitgeverij Dr. W. Junk, The Hague.

    Google Scholar 

  • Dai, L. K. & S. Y. Liang, eds. 2000. Flora Reipublicae Popularis Sinicae: delectis florae Reipublicae Popularis Sinicae. Tomus 12. Angiospermae, Monocotyledoneae, Cyperaceae (2), Caricoideae. Science Press, Beijing.

  • Dahlgren, R. M. T., H. T. Clifford & P. F. Yeo. 1985. Cyperaceae A. L. Jussieu. Pp. 407–418 in The families of the monocotyledons: structure, evolution, and taxonomy. Springer, Berlin.

    Google Scholar 

  • Davies, E. W. 1956. Cytology, evolution and the origin of the aneuploid series in the genus Carex. Hereditas 42:349–365.

    Article  Google Scholar 

  • DeBry, R. W. & R. G. Olmstead. 2000. A simulation study of reduced tree-search effort in bootstrap resampling analysis. Syst. Biol. 49: 171–179.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, A. W. F. 1972. Likelihood: an account of the statistical concept of likelihood and its application to scientific inference. Cambridge University Press, Cambridge.

    Google Scholar 

  • Egorova, T. V. 1999. The sedges (Carex L.) of Russia and adjacent states (within the limits of the former USSR). St. Petersburg State Chemical-Pharmaceutical Academy, St. Petersburg; Missouri Botanical Garden Press, St. Louis, MO.

    Google Scholar 

  • Farris, J. S., M. Källersjö, A. G. Kluge & C. Bult. 1994. Testing significance of incongruence. Cladistics 10: 315–319.

    Article  Google Scholar 

  • Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.

    Article  Google Scholar 

  • Ford, B. A., M. Iranpour, R. F. C. Naczi, J. R. Starr & C. A. Jerome. 2006. Phylogeny of Carex subg. Vignea (Cyperaceae) based on non-coding nrDNA sequence data. Syst. Bot. 31: 70–82.

    Article  Google Scholar 

  • Goetghebeur, P. 1986. Genera Cyperacearum. Een bijdrage tot de kennis van de morfologie, systematiek enfylogenese van de Cyperaceae-genera. Doctoral Thesis, Rijksuniversiteit Gent.

  • ————. 1998. Cyperaceae. Pp. 141–190 in K. Kubitzki (ed.), The families and genera of vascular plants IV, flowering plants—monocotyledons, Alismatanae and Commelinanae (except Gramineae). Springer, Berlin.

    Google Scholar 

  • Haines, R. W. & K. A. Lye. 1972. Studies in African Cyperaceae VII: panicle morphology and possible relationships in Sclerieae and Cariceae. Bot. Not. 125: 331–343.

    Google Scholar 

  • ———— & ————. 1983. The sedges and rushes of East Africa. East African Natural History Society, Nairobi.

    Google Scholar 

  • Hamlin, B. G. 1958. A new classification of Uncinia (Cyperaceae-Caricoideae). Rec. Domin. Mus. 3: 85–88.

    Google Scholar 

  • ————. 1959. A revision of the genus Uncinia (Cyperaceae–Caricoideae) in New Zealand. Dominion Museum Bulletin No. 19. Dominion Museum, Wellington.

  • Hendrichs, M., S. Michalski, D. Begerow, F. Oberwinkler & F. H. Hellwig. 2004. Phylogenetic relationships in Carex, subgenus Vignea (Cyperaceae), based on ITS sequences. Pl. Syst. Evol. 246: 109–125.

    Article  Google Scholar 

  • Hipp, A. L. 2008. Phylogeny and patterns of convergence in Carex Sect. Ovales (Cyperaceae): evidence from ITS and 5.8S sequences. In R. F. C. Naczi and B. A. Ford (eds.), Sedges: uses, diversity, and systematics of the Cyperaceae. Monogr. Syst. Bot. Missouri Bot. Gard. 108:197–214.

    Google Scholar 

  • Holm, T. 1900. Studies in the Cyperaceae XIII. Carex willdenowii and its allies. Amer. J. Sci. 10: 33–47.

    Google Scholar 

  • Holmgren, P. K., N. H. Holmgren & L. C. Barnett. 1990. Index Herbariorum, Part I: The Herbaria of the World, 8th edn. New York Botanical Garden, New York.

    Google Scholar 

  • Huelsenbeck, J. P. & F. Ronquist. 2001. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17: 754–755.

    Article  PubMed  CAS  Google Scholar 

  • Jermy, A. C., A. O. Chater & R. W. David. 1982. Sedges of the British Isles. Handbook No. 1 (2nd ed.). Botanical Society of the British Isles, London.

    Google Scholar 

  • Jones, E., D. A. Simpson, T. R. Hodkinson, M. W. Chase & J. A. N. Parnell. 2007. The Juncaceae–Cyperaceae interface: a combined plastid sequence analysis. Aliso 23:55–61.

    Google Scholar 

  • Kern, J. H. 1958. Florae Malesianae precursores XXI: notes on Malaysian and some S. E. Asian Cyperaceae VII. Acta Bot. Neerl. 7: 786–800.

    Google Scholar 

  • ————. 1974. Cyperaceae. Flora Malesiana 7: 435–753.

    Google Scholar 

  • Koyama, T. 1957. Taxonomic study of Cyperaceae 7: the systematic position of Carex sect. Decorae with a taxonomic treatment of the Japanese species. Bot. Mag. (Tokyo) 70: 347–357.

    Google Scholar 

  • ————. 1961. Classification of the family Cyperaceae (1). J. Fac. Sci. Univ. Tokyo, Sect. 3, Bot. 8: 37–141.

    Google Scholar 

  • ————. 1962. Classification of the family Cyperaceae (2). J. Fac. Sci. Univ. Tokyo, Sect. 3, Bot. 8: 149–278.

    Google Scholar 

  • Kreczetovicz, V. I. 1936. Are the sedges of subgenus Primocarex Kük. primitive? Bot. Zhurn. S.S.S.R. 21: 395–425.

    Google Scholar 

  • Kükenthal, G. 1909. Cyperaceae–Caricoideae. Pp. 1–824 in A. Engler (ed.), Das Pflanzenreich, IV. 20 (Heft 38). Wilhelm Englemann, Leipzig.

    Google Scholar 

  • Kukkonen, I. 1967. Spikelet morphology and anatomy of Uncinia Pers. (Cyperaceae). Kew Bull. 21: 93–97.

    Article  Google Scholar 

  • ————. 1978. Two new species of Schoenoxiphium (Cyperaceae). Bot. Not. 14: 819–823.

    Google Scholar 

  • ————. 1983. The genus Schoenoxiphium (Cyperaceae). A preliminary account. Bothalia 14: 819–823.

    Google Scholar 

  • ———— & T. Timonen. 1979. Species of Ustilaginales, especially of the genus Anthracoidea, as tools in plant taxonomy. Symb. Bot. Upsal. 22: 166–179.

    Google Scholar 

  • ———— & H. Toivonen. 1988. Taxonomy of wetland carices. Aquatic Bot. 30: 5–22.

    Article  Google Scholar 

  • Le Cohu, M.-C. 1967. Recherches taxinomiques sur les Carex du Massif Armoricain. Bot. Rhedon., série A, n°3, 1–213.

    Google Scholar 

  • Mackenzie, K. K. 1935. Cyperaceae - Cariceae. N. Amer. Fl. 18: 1–478.

    Google Scholar 

  • Maddison, W. P. & D.R. Maddison. 2005. Mesquite: a modular system for evolutionary analysis. Version 1.06. http://mesquiteproject.org.

  • Marie-Victorin, F. É. C. 1935. Flore Laurentienne. Les presses de l’Université de Montréal, Montréal, Canada.

    Google Scholar 

  • Mathews, S. & M. J. Donoghue. 1999. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science 286: 947–950.

    Article  PubMed  CAS  Google Scholar 

  • Muasya, A. M., D. A. Simpson, M. W. Chase & A. Culham. 1998. An assessment of suprageneric phylogeny in Cyperaceae using rbcL DNA sequences. Pl. Syst. Evol. 211: 257–271.

    Article  CAS  Google Scholar 

  • ————, J. J. Bruhl, D. A. Simpson & M. W. Chase. 2000. Supragenic phylogeny of Cyperaceae: a combined analysis. Pp. 593–600 in K. L. Wilson & D. A. Morrison (eds.), Monocots: Systematics and Evolution. CSIRO, Melbourne.

    Google Scholar 

  • Nannfeldt, J. A. 1977. The species of Anthracoidea (Ustilaginales) on Carex subgen. Vignea with special regard to the Nordic species. Bot. Not. 130: 351–375.

    Google Scholar 

  • Nelmes, E. 1951. The genus Carex in Malaysia. Reinwardtia 1: 221–450.

    Google Scholar 

  • ————. 1952. Facts and speculations on phylogeny in the tribe Cariceae of the Cyperaceae. Kew Bull. 1951: 427–436.

    Google Scholar 

  • ————. 1955. The genus Carex in Indo-China, including Thailand and lower Burma. Mém. Mus. Natl. Hist. Nat., Ser. B, Bot. 4: 83–182.

    Google Scholar 

  • Nicolson, D. H. 1992. Seventy-two proposals for the conservation of types of selected Linnaean generic names, the report of Subcommittee 3C on the lectotypification of Linnaean generic names. Taxon 41: 552–583.

    Article  Google Scholar 

  • Noltie, H. J. 1994. Kobresia Willdenow. Pp. 333–352 in H. J. Noltie (ed.), Flora of Bhutan (vol. 3, part 1). Royal Botanic Garden, Edinburgh.

    Google Scholar 

  • Ohwi, J. 1936. Cyperaceae Japonicae. I. A synopsis of the Caricoideae of Japan, including the Kuriles, Saghalin, Korea, and Formosa. Mem. Coll. Sci. Kyoto Imp. Univ., Ser. B, Biol. 11: 229–530.

    Google Scholar 

  • ————. 1965. Flora of Japan (in English). Smithsonian Institution, Washington, DC.

    Google Scholar 

  • Pagel, M. 1999. The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Syst. Biol. 48: 612–622.

    Article  Google Scholar 

  • Qiu, Y.-L., J. Lee, F. Bernasconi-Quadroni, D. E. Soltis, P. S. Soltis, M. Zanis, E. A. Zimmer, Z. Chen, V. Savolainen & M. W. Chase. 1999. The earliest angiosperms: Evidence from mitochondrial, plastid and nuclear genomes. Nature 402: 404–407.

    Article  PubMed  CAS  Google Scholar 

  • Raymond, M. 1951. Sedges as material for phytogeographical studies. Mém. Jard. Bot. Montréal 20:1–23.

    Google Scholar 

  • ————. 1959. Carices Indochinenses necnon Siamenses. Mém. Jard. Bot. Montréal 53: 1–125.

    Google Scholar 

  • Reznicek, A. A. 1990. Evolution in sedges (Carex, Cyperaceae). Canad. J. Bot. 68: 1409–1432.

    Google Scholar 

  • ————. 1992. Carex david-smithii (Cyperaceae), a new species from high Andean Peru. Novon 2: 433–436.

    Article  Google Scholar 

  • ————. 1993. Carex. Pp. 243–267 in R. McVaugh, Flora Novo-Galiciana: a descriptive account of the vascular plants of western Mexico. Vol. 13. Limnocharitaceae to Typhaceae. The University of Michigan, Ann Arbor.

    Google Scholar 

  • Roalson, E. H., J. T. Columbus & E. A. Friar. 2001. Phylogenetic relationships in Cariceae (Cyperaceae) based on ITS (nrDNA) and trnT-L-F (cpDNA) region sequences: assessment of subgeneric and sectional relationships in Carex with emphasis on section Acrocystis. Syst. Bot. 26: 318–341.

    Google Scholar 

  • Savile, D. B. O. 1979. Fungi as aids in higher plant classification. Bot. Rev. (Lancaster) 43: 377–503.

    Article  Google Scholar 

  • ———— & J. A. Calder. 1953. Phylogeny of Carex in the light of parasitism by the smut fungi. Can. J. Bot. 31: 164–174.

    Article  Google Scholar 

  • Simmons, M. P. & H. Ochoterena. 2000. Gaps as characters in sequence-based phylogenetic analyses. Syst. Biol. 49:369–381.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, D. A., A. M. Muasya, M. V. Alves, J. J. Bruhl, M. W. Chase, C. A. Furness, K. Ghamkhar, P. Goetghebeur, T. R. Hodkinson, A. D. Marchant, A. A. Reznicek, E. H. Roalson, E. Smets, J. R. Starr, W. W. Thomas, K. L. Wilson & X. Zhang. 2007. Phylogeny of Cyperaceae based on DNA sequence data—a new rbcL analysis. Aliso 23: 72–83.

    Google Scholar 

  • Smith, D. L. 1966. Development of the inflorescence in Carex. Ann. Bot. (Oxford) 30: 475–486.

    Google Scholar 

  • ———— & J. S. Faulkner. 1976. The inflorescence of Carex and related genera. Bot. Rev. (Lancaster) 42: 53–81.

    Article  Google Scholar 

  • Snell, R. S. 1936. Anatomy of the spikelets and flowers of Carex, Kobresia, and Uncinia. Bull. Torrey Bot. Club 63: 277–295.

    Article  Google Scholar 

  • Starr, J. R., R. J. Bayer & B. A. Ford. 1999. The phylogenetic position of Carex section Phyllostachys and its implications for phylogeny and subgeneric circumscription in Carex (Cyperaceae). Am. J. Bot. 86: 563–577.

    Article  PubMed  CAS  Google Scholar 

  • ————, S. A. Harris & D. A. Simpson. 2003. Potential of the 5′ and 3′ ends of the intergenic spacer (IGS) of rDNA in the Cyperaceae: new sequences for lower-level phylogenies in sedges with an example from Uncinia Pers. Int. J. Plant Sci. 164: 213–227.

    Article  CAS  Google Scholar 

  • ————, ———— & ————. 2004. Phylogeny of the unispicate taxa in Cyperaceae tribe Cariceae I: generic relationships and evolutionary scenarios. Syst. Bot. 29:528–544.

    Article  Google Scholar 

  • ————, V. Teoh, E. H. Roalson, A. M. Muasya & D. A. Simpson. 2006. Towards a phylogenetic classification of sedges (Cyperaceae): chloroplast (rbcL, matK, ndhF) and nuclear (ADC) data. Abstract 159, Botany 2006 “Looking to the future—conserving the past”, Chico, California. http://www.2006.botanyconference.org/engine/search/index.php?func=detail&aid=159.

  • ————, S. A. Harris & D. A. Simpson. 2008. Phylogeny of the unispicate taxa in Cyperaceae tribe Cariceae II: the limits of Uncinia. In R. F. C. Naczi and B. A. Ford (eds.), Sedges: uses, diversity, and systematics of the Cyperaceae. Monogr. Syst. Bot. Missouri Bot. Gard. 108:243–267.

  • Swofford, D. L. 2003. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer, Sunderland, MA.

    Google Scholar 

  • Thomas, W. W. 1984. The systematics of Rhynchospora section Dichromena. Mem. New York Bot. Gard. 37: 1–116.

    CAS  Google Scholar 

  • Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin & D. G. Higgins. 1997. The ClustalX Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876–4882.

    Article  Google Scholar 

  • Timonen, T. 1998. Inflorescence structure in the sedge tribe Cariceae (Cyperaceae). Publ. Bot. Univ. Helsinki 26:1–35.

    Google Scholar 

  • Waterway, M. J. & J. R. Starr. 2007. Phylogenetic relationships in the tribe Cariceae (Cyperaceae) based on nested analyses of three molecular data sets. Aliso 23: 165–192.

    Google Scholar 

  • ————, T. Hoshino & T. Masaki. 2008. Phylogeny, species richness, and ecological specialization in Cyperaceae tribe Cariceae. Bot. Rev. (Lancaster) (this issue).

  • Wheeler, G. A. 1989. A new species of Carex sect. Abditispicae (Cyperaceae) from northern Argentina and the status of Vesicarex collumanthus in South America. Syst. Bot. 14: 37–42.

    Article  Google Scholar 

  • ————. 1996. Three new species of Carex (Cyperaceae) from Argentina and a range extension for C. ecuadorica. Hickenia 2: 189–200.

    Google Scholar 

  • Yen, A. C. & R. G. Olmstead. 2000a. Molecular systematics of Cyperaceae tribe Cariceae based on two chloroplast DNA regions: ndhF and trnL intron-intergenic spacer. Syst. Bot. 25: 479–494.

    Article  Google Scholar 

  • ———— & ————. 2000b. Phylogenetic analysis of Carex (Cyperaceae): generic and subgeneric relationships based on chloroplast DNA. Pp. 602–609 in K. L. Wilson & D. A. Morrison (eds.), Monocots: systematics and evolution. CSIRO, Collingwood, Australia.

    Google Scholar 

  • Young, N. D. & J. Healy. 2003. GapCoder automates the use of indel characters in phylogenetic analysis. BMC Bioinformatics 4: 6.

    Article  PubMed  Google Scholar 

  • Zhang, S. R. 2001. A preliminary revision of the supraspecific classification of Kobresia Willd. (Cyperaceae). Bot. J. Linn. Soc. 135: 289–294.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Tony Reznicek for detailed discussions on Cariceae evolution and a live sample of Carex baldensis. We also thank Paul Goetghebeur for helpful discussions on inflorescence morphology and development, and two anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian R. Starr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Starr, J.R., Ford, B.A. Phylogeny and Evolution in Cariceae (Cyperaceae): Current Knowledge and Future Directions. Bot. Rev 75, 110–137 (2009). https://doi.org/10.1007/s12229-008-9020-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-008-9020-x

Keywords

Navigation