Skip to main content
Log in

Structural analysis of mycolic acids from phenol-degrading strain of Rhodococcus erythropolis by liquid chromatography–tandem mass spectrometry

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

We used reversed phase liquid chromatography–electrospray ionization tandem mass spectrometry for direct analysis of mycolic acids (MAs) from four different cultivations of Rhodococcus erythropolis. This technique enabled us to identify and quantify the specific molecular species of MAs directly from lipid extracts of the bacterium, including the determination of their basic characteristics such as retention time and mass spectra. We identified a total of 60 molecular species of MAs by means of LC/MS. In collision-induced dissociation tandem mass spectrometry, the [M-H] ions eliminated two residues, i.e., meroaldehyde and carboxylate anions containing α-alkyl chains. The structural information from these fragment ions affords structural assignment of the mycolic acids, including the lengths and number of double bond(s). Two strains, i.e., R. erythropolis CCM 2595 and genetically modified strain CCM 2595 pSRK 21 phe were cultivated on two different substrates (phenol and phenol with addition of humic acids as a sole carbon source). The addition of humic acids showed that there is a marked increase of unsaturated mycolic acids, mostly in the range of 20–100 %. This effect is more pronounced in the R. erythropolis CCM 2595 strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alshamaony L, Goodfellow M, Minnikin DE (1976) Free mycolic acids as criteria in the classification of Nocardia and the‘rhodochrous’ complex. J Gen Microbiol 92:188–199

    Article  CAS  Google Scholar 

  • Barton MD, Goodfellow M, Minnikin DE (1989) Lipid composition in the classification of Rhodococcus equi. Zentralbl Bakteriol 272:154–170

    Article  PubMed  CAS  Google Scholar 

  • Beney L, Gervais P (2001) Influence of the fluidity of the membrane on the response of microorganisms to environmental stresses. Appl Microbiol Biotechnol 57:34–42

    Article  PubMed  CAS  Google Scholar 

  • Butler WR, Guthertz LS (2001) Mycolic acid analysis by high-performance liquid chromatography for identification of Mycobacterium species. Clin Microbiol Rev 14:704–726

    Article  PubMed  CAS  Google Scholar 

  • Cejkova A, Masak J, Jirku V, Vesely M, Patek M, Nesvera J (2005) Potential of Rhodococcus erythropolis as a bioremediation organism. World J Microb Biotechnol 21:317–321

    Article  CAS  Google Scholar 

  • D’Aimmo MR, Modesto M, Biavati B (2007) Antibiotic resistance of lactic acid bacteria and Bifidobacterium spp. isolated from dairy and pharmaceutical products. Int J Food Mikrobiol 115:35–42

    Article  Google Scholar 

  • Dembitsky VM, Rezanka T, Bychek IA (1992) Fatty-acids and phospholipids from lichens of the order Lecanorales. Phytochemistry 31:851–853

    Google Scholar 

  • Dembitsky VM, Rezanka T, Rozentsvet OA (1993) Lipid-composition of 3 macrophytes from the Caspian sea. Phytochemistry 33:1015–1019

    Article  CAS  Google Scholar 

  • Dubnau E, Laneelle MA, Soares S, Benichou A, Vaz T, Prome D, Prome JC, Daffe M, Quemard A (1997) Mycobacterium bovis BCG genes involved in the biosynthesis of cyclopropyl keto- and hydroxymycolic acids. Mol Microbiol 23:313–322

    Article  PubMed  CAS  Google Scholar 

  • Gokhale RS, Saxena P, Chopra T, Mohanty D (2007) Versatile polyketide enzymatic machinery for the biosynthesis of complex mycobacterial lipids. Nat Prod Rep 24:267–277

    Article  PubMed  CAS  Google Scholar 

  • Goodfellow M (1992) The family Nocardiaceae: the Prokaryotes. Springer, New York, pp 1188–1213

    Google Scholar 

  • Holcapek M, Jandera P, Fischer J, Prokes B (1999) Analytical monitoring of the production of biodiesel by high-performance liquid chromatography with various detection methods. J Chromatogr A 858:13–31

    Article  PubMed  CAS  Google Scholar 

  • Holcapek M, Jandera P, Fischer J (2001) Analysis of acylglycerols and methyl esters of fatty acids in vegetable oils and in biodiesel. Crit Rev Anal Chem 31:53–56

    Article  CAS  Google Scholar 

  • Hsu FF, Soehl K, Turk J, Haas A (2011) Characterization of mycolic acids from the pathogen Rhodococcus equi by tandem mass spectrometry with electrospray ionization. Anal Biochem 409:112–122

    Article  PubMed  CAS  Google Scholar 

  • Ioneda T, Ishige M (1996) Electron impact and chemical ionization mass spectral analyses of methyl esters species of free mycolic acid fraction from Rhodococcus lentifragmentus. Chem Phys Lipids 83:93–109

    Article  CAS  Google Scholar 

  • Jirku V, Zizka Z, Cejkova A, Masak J, Krulikovska T, Madronova L (2009) Cell wall alterations in the yeasts exposed to a humic substance. Asian J Microbiol Biotech Environ Sci 11:277–279

    Google Scholar 

  • Larsson L (1994) Determination of microbial chemical markers by gas chromatography–mass spectrometry—potential for diagnosis and studies on metabolism in situ. APMIS 102:161–169

    Article  PubMed  CAS  Google Scholar 

  • Lechavalier MB, Lechavalier HA (1970) Chemical composition as criterion in classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443

    Article  Google Scholar 

  • Lichtenberg D, Rosenberg M, Scharfman N, Ofek I (1985) A kinetic approach to bacterial adherence to hydrocarbon. J Microbiol Meth 4:141–146

    Article  CAS  Google Scholar 

  • Martinkova L, Uhnakova B, Patek M, Nesvera J, Kren V (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35:162–177

    Article  PubMed  CAS  Google Scholar 

  • Moura MN, Martin MJ, Burguillo FJ (2007) A comparative study of the adsorption of humic acid, fulvic acid and phenol onto Bacillus subtilis and activated sludge. J Hazard Mater 149:42–48

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay S, Basu D, Chakrabarti P (1997) Characterization of a porin from Mycobacterium smegmatis. J Bacteriol 179:6205–6207

    PubMed  CAS  Google Scholar 

  • Niescher S, Wray V, Lang S, Kaschabek SR, Schlomann M (2006) Identification and structural characterization of novel trehalose dinocardiomycolates from n-alkane-grown Rhodococcus opacus 1CP. Appl Microbiol Biotechnol 70:605–611

    Article  PubMed  CAS  Google Scholar 

  • Nishiuchi Y, Baba T, Yano I (2000) Mycolic acids from Rhodococcus, Gordonia, and Dietzia. J Microbiol Methods 40:1–9

    Article  PubMed  CAS  Google Scholar 

  • Novak J, Kozler J, Janos P, Cezikova J, TokarovaV ML (2001) Humic acids from coals of the North Bohemian coal field I. Preparation and characterization. React Funct Polym 47:101–109

    Article  CAS  Google Scholar 

  • Rainey FA, Burghardt J, Kroppenstedt RM, Klatte S, Stackebrandt E (1995) Phylogenetic analysis of the genera Rhodococcus and Nocardia and evidence for the evolutionary origin of the genus Nocardia from within the radiation of Rhodococcus species. Microbiology 141:523–528

    Article  CAS  Google Scholar 

  • Ramos JL, Duque E, Gallegos MT, Godoy P, Ramos-Gonzalez MI, Rojas A, Teran W, Segura A (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Annu Rev Microbiol 56:743–768

    Article  PubMed  CAS  Google Scholar 

  • Rezanka T, Schreiberova O, Cejkova A, Sigler K (2011a) The genus Dracunculus—a source of triacylglycerols containing odd-numbered ω-phenyl fatty acids. Phytochemistry 72:1914–1925

    Article  PubMed  CAS  Google Scholar 

  • Rezanka T, Siristova L, Schreiberova O, Rezanka M, Masak J, Melzoch K, Sigler K (2011b) Pivalic acid acts as a starter unit in a fatty acid and antibiotic biosynthetic pathway in Alicyclobacillus, Rhodococcus and Streptomyces. Environ Microbiol 13:1577–1589

    Article  PubMed  CAS  Google Scholar 

  • Salati S, Papa G, Adani F (2011) Perspective on the use of humic acids from biomass as natural surfactants for industrial applications. Biotechnol Adv 29:913–922

    Article  PubMed  CAS  Google Scholar 

  • Schreiberova O, Krulikovska T, Sigler K, Cejkova A, Rezanka T (2010) RP-HPLC/MS-APCI analysis of branched chain TAG prepared by precursor-directed biosynthesis with Rhodococcus erythropolis. Lipids 45:743–756

    Article  PubMed  CAS  Google Scholar 

  • Sokolovska I, Rozenberg R, Riez C, Rouxhet PG, Agathos SN, Wattiau P (2003) Carbon source induced modifications in the mycolic acid content and cell wall permeability of Rhodococcus erythropolis E1. App Environ Microbiol 69:7019–7027

    Article  CAS  Google Scholar 

  • Song SH, Park KU, Lee JH, Kim EC, Kim JQ, Song J (2009) Electrospray ionization-tandem mass spectrometry analysis of the mycolic acid profiles for the identification of common clinical isolates of mycobacterial species. J Microbiol Methods 77:165–177

    Article  PubMed  CAS  Google Scholar 

  • Stratton HM, Brooks PR, Seviour RJ (1999) Analysis of the structural diversity of mycolic acids of Rhodococcus and Gordonla isolates from activated sludge foams by selective ion monitoring gas chromatography–mass spectrometry (SIM GC-MS). J Microbiol Methods 35:53–63

    Article  PubMed  CAS  Google Scholar 

  • Turkan A, Kalay S (2006) Monitoring lipase-catalyzed methanolysis of sunflower oil by reversed-phase high-performance liquid chromatography: elucidation of the mechanisms of lipases. J Chromatogr A 1127:34–44

    Article  PubMed  Google Scholar 

  • Vesely M, Patek M, Nesvera J, Cejkova A, Masak J, Jirku V (2003) Host-vector system for phenol-degrading Rhodococcus erythropolis based on Corynebacterium plasmids. Appl Microbiol Biotechnol 61:523–527

    PubMed  CAS  Google Scholar 

  • Wu Y, Ma B, Zhou L, Wang H, Xu J, Kemmitt S, Brookes PC (2009) Changes in the soil microbial community structure with latitude in eastern China, based on phospholipid fatty acid analysis. Appl Soil Ecol 43:234–240

    Article  Google Scholar 

  • Yassin AAF (2011) Detection and characterization of mycolic acids and their use in taxonomy and classification. Meth Microbiol 38:207–237

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Industry and Trade of the Czech Republic (project no. FR-TI1/456), the Institutional Internal Project RVO61388971, and the project GACR P503/11/0215.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Řezanka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 728 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolouchová, I., Schreiberová, O., Masák, J. et al. Structural analysis of mycolic acids from phenol-degrading strain of Rhodococcus erythropolis by liquid chromatography–tandem mass spectrometry. Folia Microbiol 57, 473–483 (2012). https://doi.org/10.1007/s12223-012-0156-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-012-0156-z

Keywords

Navigation