Skip to main content
Log in

Mild solutions for impulsive fractional differential inclusions with Hilfer derivative in Banach spaces

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

In this paper, we study the existence of mild solution for impulsive fractional differential inclusions in Banach spaces involving the Hilfer derivative. Our study is based on the nonlinear alternative of Leray–Schauder type for multivalued maps due to Martelli. An example will be added to illustrate the main result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this paper as no data sets were generated or analyzed during the current study.

References

  1. Abbas, S., Benchohra, M., Lazreg, J.E., Nieto, J.J., Zhou, Y.: Fractional Differential Equations and Inclusions: Classical and Advanced Topics. World Scientific, Hackensack (2023)

    Book  Google Scholar 

  2. Abbas, S., Benchohra, M., N’Guérékata, G.M.: Advanced Fractional Differential and Integral Equations. Nova Science Publishers, New York (2015)

    Google Scholar 

  3. Abbas, S., Benchohra, M., Nieto, J.J.: Caputo–Fabrizio fractional differential equations with non instantaneous impulses. Rend. Circ. Mat. Palermo (2) 71(1), 131–144 (2022)

    Article  MathSciNet  Google Scholar 

  4. Agarwal, R.P., Andrade, B., Siracusa, G.: On fractional integro-differential equations with state-dependent delay. Comput. Math. Appl. 62, 1143–1149 (2011)

    Article  MathSciNet  Google Scholar 

  5. Araya, D., Lizama, C.: Almost automorphic mild solutions to fractional differential equations. Nonlinear Anal. 69, 3692–3705 (2008)

    Article  MathSciNet  Google Scholar 

  6. Aubin, J.P., Cellina, A.: Differential Inclusions. Springer, Berlin (1984)

    Book  Google Scholar 

  7. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhauser, Basel (1990)

    Google Scholar 

  8. Benchohra, M., Henderson, J., Ntouyas, S.K.: Impulsive Differential Equations and Inclusions. Hindawi Publishing Corporation, New York (2006)

    Book  Google Scholar 

  9. Benchohra, M., Litimein, S.: Existence results for a new class of fractional integro-differential equations with state dependent delay. Mem. Differ. Equ. Math. Phys. 74, 27–38 (2018)

    MathSciNet  Google Scholar 

  10. Graef, J.R., Henderson, J., Ouahab, A.: Impulsive Differential Inclusions. A Fixed Point Approch. De Gruyter, Berlin (2013)

    Book  Google Scholar 

  11. Guida, K., Hilal, K., Ibnelazyz, L.: Existence of mild solutions for a class of impulsive Hilfer fractional coupled systems. Adv. Math. Phys. 2020, 1–12 (2020)

    Article  MathSciNet  Google Scholar 

  12. Harikrishnan, S., Ibrahim, R.W., Kanagarajan, K.: Fractional Ulam-stability of fractional impulsive differential equation involving Hilfer–Katugampola fractional differential operator. Univ. J. Math. Appl. 1, 106–112 (2018)

    Article  Google Scholar 

  13. Hartung, F., Herdman, T.L., Turi, J.: Parameter identification in classes of neutral differential equations with state-dependent delays. Nonlinear Anal. 39, 305–325 (2000)

    Article  MathSciNet  Google Scholar 

  14. Hoang, M.T.: Dynamical analysis of two fractional-order SIQRA malware propagation models and their discretizations. Rend. Circ. Mat. Palermo (2) 72(1), 751–771 (2023)

    Article  MathSciNet  Google Scholar 

  15. Hu, S., Papageorgiou, N.: Handbook of Multivalued Analysis, Volume I: Theory. Kluwer Academic Publishers, Dordrecht (1997)

  16. Jajarmi, A., Baleanu, D., Sajjadi, S.S., Nieto, J.J.: Analysis and some applications of a regularized \(\Psi \)-Hilfer fractional derivative. J. Comput. Appl. Math. 415, 114476 (2022)

    Article  MathSciNet  Google Scholar 

  17. Kilbas, A.A., Srivastava, H.M., Juan, J.: Theory and applications of fractional differential equations. In: North-Holland Mathematics Studies. Trujillo, Amsterdam (2006)

  18. Kumar, D.: Fractional Calculus in Medical and Health Science. CRC Press, Boca Raton (2021)

    Google Scholar 

  19. Lasota, A., Opial, Z.: An application of the Kakutani–Ky–Fan theorem in the theory of ordinary differential equations. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astoronom. Phys. 13, 781–786 (1955)

    MathSciNet  Google Scholar 

  20. Martelli, M.: A Rothe’s type theorem for non compact acyclic-valued maps. Boll. Un. Mat. Ital. 4, 70–76 (1975)

    MathSciNet  Google Scholar 

  21. Ortigueira, M. D., Valério, D.: Fractional Signals and Systems. De Gruyter (2020)

  22. Pavlačková, M., Taddei, V.: Mild solutions of second-order semilinear impulsive differential inclusions in Banach spaces. Mathematics 10(4), 672 (2022). https://doi.org/10.3390/math10040672

    Article  Google Scholar 

  23. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983)

    Book  Google Scholar 

  24. Salim, A., Benchohra, M., Lazreg, J.E., Henderson, J.: Nonlinear implicit generalized Hilfer-type fractional differential equations with non-instantaneous impulses in Banach spaces. Adv. Theory Nonlinear Anal. Appl. 4, 332–348 (2020). https://doi.org/10.31197/atnaa.825294

    Article  Google Scholar 

  25. Salim, A., Benchohra, M., Lazreg, J.E., N’Guérékata, G.: Boundary value problem for nonlinear implicit generalized Hilfer-type fractional differential equations with impulses. Abstr. Appl. Anal. 2021, 1–17 (2021)

    Article  MathSciNet  Google Scholar 

  26. Samoilenko, A.M., Perestyuk, N.A.: Impulsive Differential Equations. World Scientific, Singapore (1995)

    Book  Google Scholar 

  27. Shu, X., Lai, Y., Chen, Y.: The existence of mild solutions for impulsive fractional partial differential equations. Nonlinear Anal. 74, 2003–2011 (2011)

    Article  MathSciNet  Google Scholar 

  28. Wang, J., Feckan, M.: Periodic solutions and stability of linear evolution equations with non-instantaneous impulses. Miskolc Math. Notes 20(2), 1299–1313 (2019)

    Article  MathSciNet  Google Scholar 

  29. Wang, J., Feckan, M., Zhou, Y.: Ulam’s type stability of impulsive ordinary differential equations. J. Math. Anal. Appl. 395, 258–264 (2012)

    Article  MathSciNet  Google Scholar 

  30. Wang, J., Ibrahim, A.G., O’Regan, D.: Nonemptyness and compactness of the solution set for fractional evolution inclusions with non-instantaneous impulses. Electron. J. Differ. Equ. 2019, 1–17 (2019)

    MathSciNet  CAS  Google Scholar 

  31. Wang, J., Lin, Z.: A class of impulsive nonautonomous differential equations and Ulam–Hyers–Rassias stability. Math. Methods Appl. Sci. 38, 868–880 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

Not available.

Author information

Authors and Affiliations

Authors

Contributions

The study was carried out in collaboration of all authors. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Abdelkrim Salim.

Ethics declarations

Conflict of interest

It is declared that authors has no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammoumi, I., Hammouche, H., Salim, A. et al. Mild solutions for impulsive fractional differential inclusions with Hilfer derivative in Banach spaces. Rend. Circ. Mat. Palermo, II. Ser 73, 637–650 (2024). https://doi.org/10.1007/s12215-023-00944-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-023-00944-x

Keywords

Mathematics Subject Classification

Navigation