Skip to main content
Log in

Influence of temperature on a low-cycle fatigue behavior of a ferritic stainless steel

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

The main objective of this study is to reveal the effect of dynamic strain ageing (DSA) on a ferritic stainless steel with detail relation to monotonic and cyclic responses over a wide range of temperatures. For assessing the effect of strain rate on mechanical properties, tensile test results are studied at two different strain rates of 2×10−3/s and 2×10−4/s. Typical responses of this material are compared with other alloy in literatures that exhibits DSA. Serrations in monotonic stress-strain curves and anomalous dependence of tensile properties with temperatures are attributed to the DSA effect. The low cycle fatigue curves exhibit prominent hardening and negative temperature dependence of half-life plastic strain amplitude in temperatures between 300°C–500°C which can be explained by DSA phenomenon. The regime for dependence of marked cyclic hardening lies within the DSA regime of anomalous dependence of flow stress and dynamic strain hardening stress with temperature and negative strain rate sensitivity regime of monotonic response. It is believed that shortened fatigue life observed in the intermediate temperature is mainly due to the adverse effect of DSA. An empirical life prediction model is addressed for as-received material to consider the effect of temperature on fatigue life. The numbers of load reversals obtained from experiment and predicted from fatigue parameter are compared and found to be in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. H. Cottrell and B. A. Bilby, Dislocation theory of yielding and strain ageing of iron, Proc. Phys. Soc. A, XII (1949) 49–62.

    Article  Google Scholar 

  2. L. P. Kubin and Y. Estrin, Dynamic strain ageing and mechanical response of alloys, J. Phys. III, 1 (1991) 929–943.

    Google Scholar 

  3. S.-G. Hong and S.-B. Lee, The tensile and low-cycle fatigue behavior of cold worked 316L stainless steel: influence of dynamic strain aging, Int.J. Fatigue, 26 (2004) 899–910.

    Article  Google Scholar 

  4. K. Tsuzaki, Y. Matsuzaki, T. Maki and I. Tamura, Fatigue deformation accompanying dynamic strain aging in a pearlitic eutectoid steel, Mater. Sci. Eng. A, 142 (1) (1991) 63–70.

    Article  Google Scholar 

  5. M. Weisse, C. K. Wamukwamba, H.-J. Christ and H. Mughrabi, The cyclic deformation and fatigue behaviour of the low carbon steel SAE 1045 in the temperature regime of dynamic strain ageing, Acta Metall. Mater., 41 (1993) 2227–2233.

    Article  Google Scholar 

  6. V. Shankar, M. Valsan, R. Kannan, K. B. S. Rao, S. L. Mannan and S. D. Pathak, Low cycle fatigue behavior of a modified 9Cr-1 Mo Ferritic steel, ISRS on Material Science and Engineering, Chennai, India (2004).

    Google Scholar 

  7. M. Avalos, I. Alvarez-Armas and A. F. Armas, Dynamic strain aging effects on low-cycle fatigue of AISI 430F, Mater. Sci. Eng. A, 513–514 (2009) 1–7.

    Article  Google Scholar 

  8. K. Kanazawa, K. Yamaguchi and S. Nishijima, Mapping of low cycle fatigue mechanism at elevated temperatures for an austenitic steel, ASTM STP, 942 (1988) 519–530.

    Google Scholar 

  9. H. Abdel-Raouf, A. Plumtree and T. H. Topper, Effects of temperature and deformation rate on cyclic strength and fracture of low carbon steel, ASTM STP, 519 (1973) 28–57.

    Google Scholar 

  10. K. D. Challenger, A. K. Miller and C. R. Brinkman, An explanation for the effects of hold periods on the elevated temperature fatigue behavior of 2 1/4CR-1Mo steel, Trans. ASME, J. Eng. Mater. Tech., 103 (1981) 7–14.

    Article  Google Scholar 

  11. K. Tsuzaki, T. Hori, T. Maki and Y. Tamura, Dynamic strain aging during fatigue deformation in type 304 austenitic stainless steel, Mater. Sci. Eng. A, 61 (1983) 247–260.

    Article  Google Scholar 

  12. K. J. Kurzydlowski, The test environment effect on the mechanical properties of austenitic stainless steels, Mater. Sci. Eng. A., 234–236 (1997) 1083–1086.

    Article  Google Scholar 

  13. R. Ilola, M. Kemppainen and H. Hänninen, Dynamic strain aging of austenitic high nitrogen Cr-Ni and Cr-Mn steels, Mater. Sci. Forum, 318–320 (1999) 407–412.

    Article  Google Scholar 

  14. L. Shi and D. O. Northwood, The mechanical behavior of an AISI type 310 stainless steel, Acta Metall. Mater., 43 (2) (1995) 453–460.

    Article  Google Scholar 

  15. A. F. Armas, O. R. Bettin, I. Alvarez-Armas and G. Rubiolo, Strain aging effects on the cyclic behavior of austenitic stainless steels, J. Nucl. Mater., 155–157 (2) (1988) 644–649.

    Article  Google Scholar 

  16. L. H. De Almeida, P. R. O. Emygdio and I. Le May, Activation energy calculation and dynamic strain aging in austenitic stainless steel, Scripta Metall. Mater., 31 (5) (1994) 505–510.

    Article  Google Scholar 

  17. S. N. Ghafouri, R. G. Faulkner and T. E. Chung, Microstructural development in type 316L stainless steel during low-cycle fatigue at 350-5500C and their effects on cyclic strength and life, Mater. Sci. Tech., 2 (12) (1986) 1223–1232.

    Article  Google Scholar 

  18. H. Mughrabi and H.-J. Christ, Cyclic deformation and fatigue of selected ferritic and stainless steels:Specific Aspects, ISIJ Int., 37 (12) (1997) 1154–1169.

    Article  Google Scholar 

  19. V. S. Srinivasan, R. Sandhya, M. Valsan, K. B. S. Rao, S. L. Mannan and D. H. Sastry, The influence of dynamic strain ageing on stress response and strain-life relationship in low cycle fatigue of 316L(N) stainless steel, Scripta Mater., 37 (10) (1997) 1593–1598.

    Article  Google Scholar 

  20. K. B. S. Rao, M. Valsan, R. Sandhya, S. L. Mannan and P. Rodriguez, Dynamic strain ageing effects in low cycle fatigue, High Temp. Mater. Proc., 7 (1986) 171–177.

    Google Scholar 

  21. S. C. Tjong and S. M. Zhu, Creep and low-cycle fatigue behavior of ferritic Fe-24Cr-4Al alloy in the dynamic strain aging regime: Effect of aluminum addition, Metall. Mater. Trans. A: Physical Metall. and Mater. Sci., 28 (6) (1997) 1347–1355.

    Article  Google Scholar 

  22. L. Llanes, A. Mateo, L. Iturgoyen and M. Anglada, Aging effects on the cyclic deformation mechanisms of a duplex stainless steel, Acta Mater., 44 (10) (1996) 3967–3978.

    Article  Google Scholar 

  23. A. Girones, L. Llanes, M. Anglada and A. Mateo, Dynamic strain ageing effects on superduplex stainless steels at intermediate temperatures, Mater. Sci. Eng. A, 367 (2004) 322–328.

    Article  Google Scholar 

  24. K. O. Lee, S. Yoon, S. B. Lee and B. S. Kim, Low cycle fatigue behavior of 429EM ferritic steel at elevated temperatures, Key Eng. Mater., 261–263 (2004) 1135–1140.

    Article  Google Scholar 

  25. P. Rodriguez, Serrated plastic flow, Bull. Mater. Sci., 6 (4) (1984) 653–663.

    Article  Google Scholar 

  26. T. K. Nandy, Q. Feng and T. M. Pollock, Elevated temperature deformation and dynamic strain ageing in polycrystalline RuAl alloys, Intermetallics, 11 (2003) 1029–1038.

    Article  Google Scholar 

  27. S. Cunningham, Effect of substitutional elements on dynamic strain aging in steel, Master’s Thesis, Department of Mining and Metallurgical Engineering, McGill University, Montreal, Canada (1999).

    Google Scholar 

  28. A. van den Beukel, On the mechanism of serrated yielding and dynamic strain aging, Acta Metall., 28 (1980) 965–69.

    Article  Google Scholar 

  29. S. Herenu, I. Alvarez-Armas and A. F. Armas, The influence of dynamic strain aging on low-cycle fatigue of duplex stainless steel, Scripta Mater., 45 (2001) 739–745.

    Article  Google Scholar 

  30. A. F. Armas, M. Avalos, I. Alvarez-Armas, C. Petersen and R. Schmitt, Dynamic strain aging evidences during lowcycle fatigue deformation in ferritic-martensitic stainless steels, J. Nucl. Mater., 258–263 (1998) 1204–1208.

    Article  Google Scholar 

  31. M. B. Cortie and H. Pollak, Embrittlement and aging at 475 °C in an experimental ferritic stainless steel containing 38 wt.% chromium, Mater. Sci. Eng. A, 61 (1995) 153–163.

    Article  Google Scholar 

  32. H. Li, A. Nishimura, Z. Li, T. Nagasaka and T. Muroga, Low cycle fatigue behavior of JLF-1 steel at elevated temperatures, Fusion Eng. Des., 81 (2006) 241–245.

    Article  Google Scholar 

  33. M. Valsan, D. H. Sastry, K. B. S. Rao and S. L. Mannan, Effect of strain rate on the high-temperature low-cycle fatigue properties of a nimonic PE-16 superalloy, Metall. Trans., 25A (1995) 159–171.

    Google Scholar 

  34. A. Nagesha, M. Valsan, R. Kannan, K. Bhanu Sankar Rao and S. L. Mannan, Influence of temperature on the low-cycle fatigue behavior of a modified 9Cr-1Mo ferritic steel, Int.J. Fatigue, 24 (2002) 1285–1293.

    Article  Google Scholar 

  35. J. Bressers, High temperature alloys, their exploitable potential, J. B. Marriott, M. Merz, J. Nihoul, J. Ward, editors., Elsevier Applied Science (1987) 385–410.

    Google Scholar 

  36. L. F. Coffin Jr, A study of the effects of cyclic thermal stresses on ductile metal, Trans. ASME, 76 (1954) 931–950.

    Google Scholar 

  37. J. D. Morrow, ASTM STP 378 (1964) Philadelphia, 45–84.

    Google Scholar 

  38. X. Q. Shi, H. L. J. Pang, W. Zhou and Z. P. Wang, A modified energy-based low cycle fatigue model for eutectic solder alloy, Scripta Mater., 41 (3) (1999) 289–296.

    Article  Google Scholar 

  39. L. J. Meng, J. Sun, H. Xing and G. W. Pang, Serrated flow behavior in AL6XN austenitic stainless steel, J. Nucl. Mater., 394 (1) (2009) 34–38.

    Article  Google Scholar 

  40. A. Nagesha, S. Goyal, M. Nandagopal, P. Parameswaran, R. Sandhya, M. D. Mathew and S. K. Mannan, Dynamic strain ageing in Inconel® Alloy 783 under tension and low cycle fatigue, Mater. Sci. Eng. A, 546 (2012) 34–39.

    Article  Google Scholar 

  41. J. Vanaja, K. Laha, S. Sam, M. Nandagopal, S. P. Selvi, M. D. Mathew, T. Jayakumar and E. R. Kumar, Influence of strain rate and temperature on tensile properties and flow behaviour of a reduced activation ferritic-martensitic steel, J. Nucl. Mater., 424 (1–3) (2012) 116–122.

    Article  Google Scholar 

  42. R. R. U. Queiroz, F. G. G. Cunha and B. M. Gonzalez, Study of dynamic strain aging in dual phase steel, Mater. Sci. Eng. A, 543 (2012) 84–87.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Humayun Kabir.

Additional information

Recommended by Associate Editor Hak-Sung Kim

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabir, S.M.H., Yeo, Ti. Influence of temperature on a low-cycle fatigue behavior of a ferritic stainless steel. J Mech Sci Technol 28, 2595–2607 (2014). https://doi.org/10.1007/s12206-014-0616-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-014-0616-2

Keywords

Navigation