Skip to main content
Log in

Repetitive genomic elements and overall DNA methylation changes in acute myeloid and childhood B-cell lymphoblastic leukemia patients

International Journal of Hematology Aims and scope Submit manuscript

Abstract

Aberrant epigenetic regulation is a hallmark of neoplastic cells. Increased DNA methylation of individual genes’ promoter regions and decreases in overall DNA methylation level are both generally observed in cancer. In solid tumors, this global DNA hypomethylation is related to reduced methylation of repeated DNA elements (REs) and contributes to genome instability. The aim of the present study was to assess methylation level of LINE-1 and ALU REs and total 5-methylcytosine (5metC) content in adult acute myeloid leukemia (AML) (n = 58), childhood B-cell acute lymphoblastic leukemia (ALL) (n = 32), as the most frequent acute leukemias in two age categories and in normal adult bone marrow and children’s blood samples. DNA pyrosequencing and ELISA assays were used, respectively. Global DNA hypomethylation was not observed in leukemia patients. Results revealed higher DNA methylation of LINE-1 in AML and ALL samples compared to corresponding normal controls. Elevated methylation of ALU and overall 5metC level were also observed in B-cell ALL patients. Differences of REs and global DNA methylation between AML cytogenetic-risk groups were observed, with the lowest methylation levels in intermediate-risk/cytogenetically normal patients. B-cell ALL is characterized by the highest DNA methylation level compared to AML and controls and overall DNA methylation is correlated with leukocyte count.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Dores GM, Devesa SS, Curtis RE, Linet MS, Morton LM. Acute leukemia incidence and patient survival among children and adults in the United States, 2001–2007. Blood. 2012;119:34–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Shih AH, Abdel-Wahab O, Patel JP, Levine RL. The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer. 2012;12:599–612.

    Article  CAS  PubMed  Google Scholar 

  3. Bocker MT, Hellwig I, Breiling A, Eckstein V, Ho AD, Lyko F. Genome-wide promoter DNA methylation dynamics of human hematopoietic progenitor cells during differentiation and aging. Blood. 2011;117:e182–9.

    Article  CAS  PubMed  Google Scholar 

  4. Bröske A-M, Vockentanz L, Kharazi S, Huska MR, Mancini E, Scheller M, et al. DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat Genet. 2009;41:1207–15.

    Article  PubMed  Google Scholar 

  5. Cheung H–H, Lee T-L, Rennert OM, Chan W-Y. DNA methylation of cancer genome. Birth Defects Res C Embryo Today. 2009;87:335–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.

    Article  CAS  PubMed  Google Scholar 

  7. Stumpel DJPM, Schneider P, van Roon EHJ, Pieters R, Stam RW. Absence of global hypomethylation in promoter hypermethylated mixed lineage leukaemia-rearranged infant acute lymphoblastic leukaemia. Eur J Cancer. 2013;49:175–84.

    Article  CAS  PubMed  Google Scholar 

  8. Römermann D, Hasemeier B, Metzig K, Schlegelberger B, Länger F, Kreipe H, et al. Methylation status of LINE-1 sequences in patients with MDS or secondary AML. Verh Dtsch Ges Pathol. 2007;91:338–42.

    PubMed  Google Scholar 

  9. Weisenberger DJ, Campan M, Long TI, Kim M, Woods C, Fiala E, et al. Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res. 2005;33:6823–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Price EM, Robinson WP. Different measures of “genome-wide” DNA methylation exhibit unique properties in placental and somatic tissues. Epigenetics. 2012;7:965.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114:937–51.

    Article  CAS  PubMed  Google Scholar 

  12. Grimwade D. The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial. Blood. 2001;98:1312–20.

    Article  CAS  PubMed  Google Scholar 

  13. Van Dongen JJM, Langerak AW, Brüggemann M, Evans PAS, Hummel M, Lavender FL, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 2003;17:2257–317.

    Article  PubMed  Google Scholar 

  14. Scholl S, Mügge L-O, Landt O, Loncarevic IF, Kunert C, Clement JH, et al. Rapid screening and sensitive detection of NPM1 (nucleophosmin) exon 12 mutations in acute myeloid leukaemia. Leuk Res. 2007;31:1205–11.

    Article  CAS  PubMed  Google Scholar 

  15. Shimada A, Taki T, Kubota C, Tawa A, Horibe K, Tsuchida M, et al. No nucleophosmin mutations in pediatric acute myeloid leukemia with normal karyotype: a study of the Japanese Childhood AML Cooperative Study Group. Leukemia. 2007;21:1307.

    Article  CAS  PubMed  Google Scholar 

  16. Libura M, Asnafi V, Tu A, Delabesse E, Tigaud I, Cymbalista F, et al. FLT3 and MLL intragenic abnormalities in AML reflect a common category of genotoxic stress. Blood. 2003;102:2198–204.

    Article  CAS  PubMed  Google Scholar 

  17. Marcucci G, Maharry K, Wu Y-Z, Radmacher MD, Mrózek K, Margeson D, et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol. 2010;28:2348–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Massé A, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009;360:2289–301.

  19. Bae JM, Shin S-H, Kwon H-J, Park S-Y, Kook MC, Kim Y-W, et al. ALU and LINE-1 hypomethylations in multistep gastric carcinogenesis and their prognostic implications. Int J Cancer. 2012;131:1323–31.

    Article  CAS  PubMed  Google Scholar 

  20. Smigielski EM, Sirotkin K, Ward M, Sherry ST. dbSNP: a database of single nucleotide polymorphisms. Nucleic Acids Res. 2000;28:352–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18:553–67.

    Article  CAS  PubMed  Google Scholar 

  22. Shigaki H, Baba Y, Watanabe M, Murata A, Iwagami S, Miyake K, et al. LINE-1 hypomethylation in gastric cancer, detected by bisulfite pyrosequencing, is associated with poor prognosis. Gastric Cancer. 2013;16:480–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Kroeger H, Jelinek J, Estécio MRH, He R, Kondo K, Chung W, et al. Aberrant CpG island methylation in acute myeloid leukemia is accentuated at relapse. Blood. 2008;112:1366–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Negrotto S, Ng KP, Jankowska AM, Bodo J, Gopalan B, Guinta K, et al. CpG methylation patterns and decitabine treatment response in acute myeloid leukemia cells and normal hematopoietic precursors. Leukemia 2012;26:244–54.

  25. Deneberg S, Grövdal M, Karimi M, Jansson M, Nahi H, Corbacioglu A, et al. Gene-specific and global methylation patterns predict outcome in patients with acute myeloid leukemia. Leukemia. 2010;24:932–41.

    Article  CAS  PubMed  Google Scholar 

  26. Kohli RM, Zhang Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature. 2013;502:472–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Dunican DS, Cruickshanks HA, Suzuki M, Semple CA, Davey T, Arceci RJ, et al. Lsh regulates LTR retrotransposon repression independently of Dnmt3b function. Genome Biol. 2013;14:R146.

  28. Yamazaki J, Taby R, Vasanthakumar A, Macrae T, Ostler KR, Shen L, et al. Effects of TET2 mutations on DNA methylation in chronic myelomonocytic leukemia. Epigenetics. 2012;30:201–7.

    Article  Google Scholar 

  29. Ohka F, Natsume A, Motomura K, Kishida Y, Kondo Y, Abe T, et al. The Global DNA methylation surrogate LINE-1 methylation is correlated with MGMT promoter methylation and is a better prognostic factor for glioma. Lesniak MS, editor. PLoS One 2011;6:e23332.

  30. Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlén S-E, Greco D, et al. Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS One. 2012;7:e41361.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Hogart A, Lichtenberg J, Ajay SS, Anderson S, Margulies EH, Bodine DM. Genome-wide DNA methylation profiles in hematopoietic stem and progenitor cells reveal overrepresentation of ETS transcription factor binding sites. Genome Res. 2012;22:1407–18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Calvanese V, Fernández AF, Urdinguio RG, Suárez-Alvarez B, Mangas C, Pérez-García V, et al. A promoter DNA demethylation landscape of human hematopoietic differentiation. Nucleic Acids Res. 2012;40:116–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Fraga MF, Agrelo R, Esteller M. Cross-talk between aging and cancer: the epigenetic language. Ann N Y Acad Sci. 2007;1100:60–74.

    Article  CAS  PubMed  Google Scholar 

  34. Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL, et al. Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet. 2009;5:e1000602.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Jintaridth P, Mutirangura A. Distinctive patterns of age-dependent hypomethylation in interspersed repetitive sequences. Physiol. Genomics. 2010;41:194–200.

    Article  CAS  PubMed  Google Scholar 

  36. Bollati V, Schwartz J, Wright R, Litonjua A, Tarantini L, Suh H, et al. Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech Ageing Dev. 2009;130:234–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Cho N-Y, Kim B-H, Choi M, Yoo EJ, Moon KC, Cho Y-M, et al. Hypermethylation of CpG island loci and hypomethylation of LINE-1 and Alu repeats in prostate adenocarcinoma and their relationship to clinicopathological features. J Pathol. 2007;211:269–77.

    Article  CAS  PubMed  Google Scholar 

  38. Choi I-S, Estecio MRH, Nagano Y, Kim DH, White JA, Yao JC, et al. Hypomethylation of LINE-1 and Alu in well-differentiated neuroendocrine tumors (pancreatic endocrine tumors and carcinoid tumors). Mod Pathol. 2007;20:802–10.

    Article  CAS  PubMed  Google Scholar 

  39. Wang L, Wang F, Guan J, Le J, Wu L, Zou J, et al. Relation between hypomethylation of long interspersed nucleotide elements and risk of neural tube defects. Am J Clin Nutr. 2010;91:1359–67.

    Article  CAS  PubMed  Google Scholar 

  40. Ji H, Ehrlich LIR, Seita J, Murakami P, Doi A, Lindau P. Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature. 2010;467:338–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the research Grant No. 344/N-INCA/2008/0 from Ministry of Science and Higher Education of Poland.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateusz Bujko.

Additional information

M. Bujko and E. Musialik contributed equally to this work.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bujko, M., Musialik, E., Olbromski, R. et al. Repetitive genomic elements and overall DNA methylation changes in acute myeloid and childhood B-cell lymphoblastic leukemia patients. Int J Hematol 100, 79–87 (2014). https://doi.org/10.1007/s12185-014-1592-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-014-1592-0

Keywords

Navigation