Skip to main content
Log in

Rapid Detection of Vibrio parahaemolyticus in Shellfish by Real-Time Recombinase Polymerase Amplification

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

Vibrio parahaemolyticus (V. parahaemolyticus) is a zoonotic pathogen generally found in seafood. To detect the foodborne pathogen rapidly and accurately for food safety measures, we developed a real-time recombinase polymerase amplification (RPA) method. An evaluation of the specificity and sensitivity of the method is discussed here. A set of primers and probe was specially designed to target the tlh gene, which is usually regarded as a marker of total V. parahaemolyticus strains. During the reaction, target DNA was amplified and tagged with specific fluorophore within 10 min and at an incubation temperature of 40 °C. In addition to fast amplification and low temperature, the fluorescence signal was synchronized with the amplification of products for the generation of real-time data. The detection limit of this assay was 0.4 pg/μL of DNA, which is comparable to assays that use the bacterial culture as template, 4 × 103 cfu/mL. The real-time RPA method had a stable performance when testing the spiking shellfish samples at the same level of contamination by the pathogen in different kinds of shellfish. Thus, the real-time RPA method shows great potential for on-site detection of V. parahaemolyticus, especially in low-resource settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bej AK, Patterson DP, Brasher CW, Vickery MCL, Jones DD, Kaysner CA (1999) Detection of total and hemolysin-producing Vibrio parahaemolyticus in shellfish using multiplex PCR amplification of tl, tdh and trh. J Microbiol Methods 36:215–225

    Article  CAS  PubMed  Google Scholar 

  • Blackstone GM, Nordstrom JL, Vickery MCL, Bowen MD, Meyer RF, Depaola A (2003) Detection of pathogenic Vibrio parahaemolyticus in oyster enrichments by real time PCR. J Microbiol Methods 53:149–155

    Article  CAS  PubMed  Google Scholar 

  • Boyle DS, Lehman DA, Lillis L, Peterson D, Singhal M, Armes N, Parker M, Piepenburg O, Overbaugh J (2013) Rapid detection of HIV-1 proviral DNA for early infant diagnosis using recombinase polymerase amplification. MBio 4:e00135–e00113

    Article  PubMed  PubMed Central  Google Scholar 

  • Broberg CA, Calder TJ, Orth K (2011) Vibrio parahaemolyticus cell biology and pathogenicity determinants. Microbes Infect 13:992–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clancy E, Higgins O, Forrest MS, Boo TW, Cormican M, Barry T, Piepenburg O, Smith TJ (2015) Development of a rapid recombinase polymerase amplification assay for the detection of Streptococcus pneumoniae in whole blood. BMC Infect Dis 15:481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crannell ZA, Rohrman B, Richards-Kortum R (2014) Quantification of HIV-1 DNA using real-time recombinase polymerase amplification. Anal Chem 86:5615–5619

    Article  CAS  PubMed  Google Scholar 

  • Craw P, Balachandran W (2012) Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review. Lab Chip 12:2469–2486

    Article  CAS  PubMed  Google Scholar 

  • Daniels NA, Mackinnon L, Bishop R, Altekruse S, Ray B, Hammond RM, Thompson S, Wilson S, Bean NH, Griffin PM, Slutsker L (2000) Vibrio parahaemolyticus infections in the United States, 1973–1998. J Infect Dis 181:1661–1666

    Article  CAS  PubMed  Google Scholar 

  • Euler M, Wang YJ, Otto P, Tomaso H, Escudero R, Anda P, Hufert FT, Weidmann M (2012) Recombinase polymerase amplification assay for rapid detection of Francisella tularensis. J Clin Microbiol 50:2234–2238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faye O, Soropogui B, Patel P, ElWahed AA, Loucoubar C, Fall G, Kiory D, Magassouba N, Keita S, Kondé MK, Diallo AA, Koivogui L, Karlberg H, Mirazimi A, Nentwich O, Piepenburg O, Niedrig M, Weidmann M and Sall AA (2015) Development and deployment of a rapid recombinase polymerase amplification Ebola virus detection assay in Guinea in 2015. Eurosurveillance: bulletin europeen sur les maladies transmissibles = European communicable disease bulletin 20

  • Fuenzalida L, Hernández C, Toro J, Rioseco ML, Romero J, Espejo RT (2006) Vibrio parahaemolyticus in shellfish and clinical samples during two large epidemics of diarrhoea in southern Chile. Environ Microbiol 8:675–683

    Article  CAS  PubMed  Google Scholar 

  • Gao W, Huang H, Zhang Y, Zhu P, Yan X, Fan J, Chen X (2017) Recombinase polymerase amplification-based assay for rapid detection of Listeria monocytogenes in food samples. Food Anal Methods 10:1972–1981

    Article  Google Scholar 

  • Han HH, Li FQ, Yan WX, Guo YC, Li N, Liu XM, Zhu JH, Xu J, Chen Y, Li XG, Lv H, Zhang YQ, Cai T, Chen YZ (2015) Temporal and spatial variation in the abundance of total and pathogenic Vibrio parahaemolyticus in shellfish in China. PLoS One 10

  • He PY, Zhu GY, Luo JY, Wang HH, Yan Y, Chen LX, Gao WJ, Chen ZW (2016) Development and application of a one-tube multiplex real-time PCR with melting curve analysis for simultaneous detection of five foodborne pathogens in food samples. J Food Saf

  • Hsiao HI, Jan MS, Chi HJ (2016) Impacts of climatic variability on Vibrio parahaemolyticus outbreaks in Taiwan. Int J Environ Res Public Health 13:504–507

    Article  CAS  Google Scholar 

  • Kanungo S, Sur D, Ali M, You YA, Pal D, Manna B, Niyogi SK, Sarkar B, Bhattacharya SK, Clemens JD, Nair GB (2012) Clinical, epidemiological, and spatial characteristics of Vibrio parahaemolyticus diarrhea and cholera in the urban slums of Kolkata, India. BMC Public Health 12:1–9

    Article  Google Scholar 

  • Kim J, Easley CJ (2011) Isothermal DNA amplification in bioanalysis strategies and applications. Bioanalysis 3:227–239

    Article  CAS  PubMed  Google Scholar 

  • Kirs M, Depaola A, Fyfe R, Jones JL, Krantz JA, Laanen AV, Cotton D, Castle M (2011) A survey of oysters (Crassostrea gigas) in New Zealand for Vibrio parahaemolyticus and Vibrio vulnificus. Int J Food Microbiol 147:149–153

    Article  CAS  PubMed  Google Scholar 

  • Lillis L, Lehman DA, Siverson JB, Weis J, Cantera J, Parker M, Piepenburg O, Overbaugh J, Boyle DS (2016a) Cross-subtype detection of HIV-1 using reverse transcription and recombinase polymerase amplification. J Virol Methods 230:28–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lillis L, Siverson J, Lee A, Cantera J, Parker M, Piepenburg O, Lehman DA, Boyle DS (2016b) Factors influencing recombinase polymerase amplification (RPA) assay outcomes at point of care. Mol Cell Probes 30:74–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutz S, Weber P, Focke M, Faltin B, Hoffmann J, Muller C, Mark D, Roth G, Munday P, Armes N, Piepenburg O, Zengerle R, Stetten vF (2010) Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA). Lab Chip 10:887–893

    Article  CAS  PubMed  Google Scholar 

  • Malcolm TTH, Cheah YK, Radzi CWJWM, Kasim FA, Kantilal HK, John TYH, Martinez-Urtaza J, Nakaguchi Y, Nishibuchi M, Son R (2015) Detection and quantification of pathogenic Vibrio parahaemolyticus in shellfish by using multiplex PCR and loop-mediated isothermal amplification assay. Food Control 47:664–671

    Article  CAS  Google Scholar 

  • Mccarter LL (1999) The multiple identities of Vibrio parahaemolyticus. J Mol Microbiol Biotechnol 1:51–57

    CAS  PubMed  Google Scholar 

  • Mclaughlin JB, Depaola A, Bopp CA, Martinek KA, Napolilli NP, Allison CG, Murray SL, Thompson EC, Bird MM, Middaugh JP (2005) Outbreak of Vibrio parahaemolyticus gastroenteritis associated with Alaskan oysters. N Engl J Med 353:1463–1470

    Article  CAS  PubMed  Google Scholar 

  • Mudoh MF, Parveen S, Schwarz J, Rippen T, Chaudhuri A (2014) The effects of storage temperature on the growth of Vibrio parahaemolyticus and organoleptic properties in oysters. Front Public Health 2

  • Nishibuchi M, Kaper JB (1995) Thermostable direct hemolysin gene of Vibrio parahaemolyticus: a virulence gene acquired by a marine bacterium. Infect Immun 63:2093–2099

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nordstrom JL, Vickery MCL, Blackstone GM, Murray SL, Depaola A (2007) Development of a multiplex real-time PCR assay with an internal amplification control for the detection of total and pathogenic Vibrio parahaemolyticus bacteria in oysters. Appl Environ Microbiol 73:5840–5847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piepenburg O, Williams CH, Stemple DL, Armes NA (2006) DNA detection using recombination proteins. PLoS Biol 4:e204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren H, Yang MJ, Zhang GX, Liu SW, Wang XH, Ke YH, Du XY, Wang ZJ, Huang LY, Liu C, Chen ZL (2016) Development of a rapid recombinase polymerase amplification assay for detection of Brucella in blood samples. Mol Cell Probes 30:122–124

    Article  CAS  PubMed  Google Scholar 

  • Shen F, Davydova EK, Du WB, Kreutz JE, Piepenburg O, Ismagilov RF (2011) Digital isothermal quantification of nucleic acids via simultaneous chemical initiation of recombinase polymerase amplification reactions on SlipChip. Anal Chem 83:3533–3540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimohata T, Takahashi A (2010) Diarrhea induced by infection of Vibrio parahaemolyticus. J Med Invest 57:179–182

    Article  PubMed  Google Scholar 

  • Silvester R, Alexander D, Hatha M (2015) Prevalence, antibiotic resistance, virulence and plasmid profiles of Vibrio parahaemolyticus from a tropical estuary and adjoining traditional prawn farm along the southwest coast of India. Ann Microbiol 65:2141–2149

    Article  CAS  Google Scholar 

  • Su YC, Liu C (2007) Vibrio parahaemolyticus : a concern of seafood safety. Food Microbiol 24:549–558

    Article  PubMed  Google Scholar 

  • Valiadi M, Kalsi S, Jones IGF, Turner C, Sutton JM and Morgan H (2016) Simple and rapid sample preparation system for the molecular detection of antibiotic resistant pathogens in human urine. Biomed Microdevices In Press:1–10

  • Wang RZ, Zhong YF, Gu XS, Yuan J, Saeed AF, Wang SH (2015) The pathogenesis, detection, and prevention of Vibrio parahaemolyticus. Front Microbiol 6:144

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Li DX, Wang Y, Li KW, Ye CY (2016) Rapid and sensitive detection of Vibrio parahaemolyticus and Vibrio vulnificus by multiple endonuclease restriction real-time loop-mediated isothermal amplification technique. Molecules 21:428–437

    Article  CAS  Google Scholar 

  • Ward LN, Bej AK (2006) Detection of Vibrio parahaemolyticus in shellfish by use of multiplexed real-time PCR with TaqMan fluorescent probes. Appl Environ Microbiol 72:2031–2042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West CKG, Klein SL, Lovell CR (2013) High frequency of virulence factor genes tdh, trh, and tlh in Vibrio parahaemolyticus strains isolated from a pristine estuary. Appl Environ Microbiol 79:2247–2252

    Article  CAS  Google Scholar 

  • Xia XM, Yu YX, Weidmann M, Pan YJ, Yan SL, Wang YJ (2014) Rapid detection of shrimp white spot syndrome virus by real time, isothermal recombinase polymerase amplification assay. PLoS One 9:e104667

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu C, Li L, Jin WJ, Wan YS (2014) Recombinase polymerase amplification (RPA) of CaMV-35S promoter and nos terminator for rapid detection of genetically modified crops. Int J Mol Sci 15:18197–18205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Qin XD, Wang GX, Zhang YE, Shang YJ, Zhang ZD (2015) Development of a fluorescent probe-based recombinase polymerase amplification assay for rapid detection of Orf virus. Virol J 12:206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang MJ, Ke YH, Wang XS, Hang R, Wei L, Lu HJ, Zhang WY, Liu SW, Chang GH, Tian SG (2016) Development and evaluation of a rapid and sensitive EBOV-RPA test for rapid diagnosis of Ebola virus disease. Sci Rep 6

  • Yingkajorn M, Sermwittayawong N, Khamhaeng N, Nishibuchi M, Vuddhakul V (2015) Quantitative analysis of pathogenic and nonpathogenic Vibrio parahaemolyticus in shrimp derived from industrial processing. J Food Saf 36:254–259

    Article  CAS  Google Scholar 

  • Zaghloul H, El-shahat M (2014) Recombinase polymerase amplification as a promising tool in hepatitis C virus diagnosis. World J Hepatol 6:916–922

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang QH, Dong XH, Chen B, Zhang YH, Yao Z, Li WM (2015) Zebrafish as a useful model for zoonotic Vibrio parahaemolyticus pathogenicity in fish and human. Dev Comp Immunol 55:159–168

    Article  CAS  PubMed  Google Scholar 

  • Zhong QP, Tian J, Wang B, Wang L (2016) PMA based real-time fluorescent LAMP for detection of Vibrio parahaemolyticus in viable but nonculturable state. Food Control 63:230–238

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Ningbo Academy of Inspection and Quarantine for providing the bacterial strain for this study and allowing us to finish the assay of culturing strains in the laboratory there. Authors also appreciated the assistance and guidance of the staff there and the professionals at the Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases. We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Funding

This study was funded by the Ningbo Science and Technology Innovation Team (2015C110018); Ningbo Marine Algae Biotechnology Team (2011B81007); Zhejiang Provincial Public Welfare Technology Program of China (2017C33133); K.C. Wang Magna Fund in Ningbo University (SS); LiDakSum Marine Biopharmaceutical Development Fund; National 111 Project of China; the Earmarked Fund for Modern Agro-industry Technology Research System, China (CARS-49); Zhejiang Xinmiao Talents Program (2015R405013); and Scientific Research Foundation of Graduate School of Ningbo University (G16091).

Author information

Authors and Affiliations

Authors

Contributions

Peng Zhu and Weifang Gao contributed equally to this work.

Corresponding author

Correspondence to Xiaojun Yan.

Ethics declarations

Conflict of Interest

Peng Zhu declares that he has no conflict of interest. Weifang Gao declares that he has no conflict of interest. Hailong Huang declares that he has no conflict of interest. Jinpo Jiang declares that he has no conflict of interest. Xianfeng Chen declares that he has no conflict of interest. Jianzhong Fan declares that he has no conflict of interest. Xiaojun Yan declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, P., Gao, W., Huang, H. et al. Rapid Detection of Vibrio parahaemolyticus in Shellfish by Real-Time Recombinase Polymerase Amplification. Food Anal. Methods 11, 2076–2084 (2018). https://doi.org/10.1007/s12161-018-1188-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-018-1188-z

Keywords

Navigation