Skip to main content
Log in

Development and Analytical Validation of Robust Near-Infrared Multivariate Calibration Models for the Quality Inspection Control of Mozzarella Cheese

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

This paper proposed and validated robust diffuse reflectance near-infrared methods for the direct determination of fat and moisture in cow mozzarella cheeses using partial least squares regression. They were developed under the realistic conditions of routine analysis in a state laboratory of quality inspection control and were used for analyzing a great variety of mozzarella samples manufactured by different manufacturing procedures and originating from the whole state of Minas Gerais, Brazil (more than 100 different producers). A robust methodology was implemented, including the detection of outliers and the harmonization of the multivariate concepts with the traditional univariate guidelines. The models were constructed in the ranges from 38.7 to 58.0 % w/w on dry basis for fat and from 41.5 to 55.1 % w/w for moisture, providing root mean square errors of prediction of 2.1 and 0.9 %, respectively. Both methods were validated through the estimation of figures of merit, such as linearity, trueness, precision, analytical sensitivity, ruggedness, bias, and residual prediction deviation. Once the methods were adopted, their performances were monitored for approximately 1 year through control charts and were considered satisfactorily stable with prediction errors within the established limits. Beyond these specific methods, it was also pursued to present a complete methodology for multivariate analytical validation, an important aspect for the implementation of near-infrared spectroscopy methods in the routine of food quality inspection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BF:

Brown–Forsythe test

CLS:

Classical least squares

DW:

Durbin–Watson test

FOM:

Figures of merit

IMA:

Instituto Mineiro de Agropecuária

LV:

Latent variables

MLR:

Multiple linear regression

NAS:

Net analyte signal

NIRS:

Near-infrared spectroscopy

PCR:

Principal components regression

PLS:

Partial least squares

RJ:

Ryan–Joiner test

RMSEC:

Root mean square error of calibration

RMSECV:

Root mean square error of cross-validation

RMSEP:

Root mean square error of prediction

RPD:

Relative prediction deviation

RSD:

Relative standard deviation

SD:

Standard deviation

SDsd :

Standard deviation of the successive differences

SDV:

Standard deviation of validation errors

SEL:

Selectivity

SEN:

Sensitivity

γ :

Analytical sensitivity

ε :

Instrumental noise

References

  • ASTM (2012) Standard practices for infrared multivariate quantitative analysis—E1655-05. ASTM International, West Conshohocken

    Google Scholar 

  • Badertscher R, Berger T, Kuhn R (2007) Int Dairy J 17:20

    Article  CAS  Google Scholar 

  • Ben Gera I, Norris KH (1968) Israel J Agric Res 18:117

    CAS  Google Scholar 

  • Blazquez C, Downey G, O’Donnell C, O’Callaghan D, Howard V (2004) J Near Infrared Spectrosc 12:179

    Article  Google Scholar 

  • Bradley RL, Vanderwarn MA (2001) J AOAC Int 84:570

    CAS  Google Scholar 

  • Bruns RE, Scarminio IS, Barros Neto B (2006) Statistical design—Chemometrics. In: Rutan S, Walczak B (eds) Data handling in science and technology, vol. 25. Elsevier, Amsterdam

  • Draper NR, Smith H (1998) Applied regression analysis. Wiley, New Jersey

    Google Scholar 

  • Durbin J, Watson GS (1951) Biometrika 38:159

    CAS  Google Scholar 

  • EC (2002) European Community Directive 657. Comission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results, Official Journal, L221, 8–36, Brussels

  • FAO (1998) Food and Agriculture Organization. Validation of analytical methods for food control. Report of a Joint FAO/IAEA Experte Consultation, FAO Food and Nutrition Paper No. 68, Rome

  • Ferreira MH, Braga JWB, Sena MM (2012) Microchem J. doi:10.1016/j.microc.2012.03.008

  • Harbutt J (2009) The world cheese book, 1st edn. DK Publishing, New York

    Google Scholar 

  • Horwitz W (1995) Pure Appl Chem 67:331

    Article  Google Scholar 

  • Huang H, Yu H, Xu H, Ying Y (2008) J Food Eng 87:303

    Article  CAS  Google Scholar 

  • ICH (1995) International Conference on Harmonization, Tripartite Guideline—Q2A Text on Validation of Analytical Procedures, Fed. Regist., 60 FR 11260, USA

  • ICH (1997) International Conference on Harmonization, Tripartite Guideline—Q2B Validation of Analytical Procedures: Methodology, Fed. Regist., 62 FR 27464, USA

  • Isaksson T, Naes T (1988) Appl Spectrosc 42:1273

    Article  CAS  Google Scholar 

  • Karoui R, Mouazen AM, Dufour E, Pillonel L, Schaller E, Picque D, De Baerdemaeker J, Bosset JO (2006) Eur Food Res Technol 223:44

    Article  CAS  Google Scholar 

  • Kennard RW, Stone LA (1969) Technometrics 11:137

    Article  Google Scholar 

  • Lorber A, Faber K, Kowalski BR (1997) Anal Chem 69:1620

    Article  CAS  Google Scholar 

  • Lucas A, Andueza D, Rock E, Martin B (2008) J Agric Food Chem 56:6801

    Article  CAS  Google Scholar 

  • MAPA (1997) Secretaria de Defesa Agropecuária. Ministério da Agricultura, Pecuária e Abastecimento. Portaria No. 366, Brazil

  • MAPA (2009) Secretaria de Defesa Agropecuária. Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa No. 24, Brazil

  • Ntsame Affane AL, Fox GP, Sigge GO, Manley M, Britz TJ (2011) Int Dairy J 21:896

    Article  CAS  Google Scholar 

  • Olivieri AC, Faber NM, Ferré J, Boqué R, Kalivas JH, Mark H (2006) Pure Appl Chem 78:633

    Article  CAS  Google Scholar 

  • Patil AG, Oak SP, Taware SA, Rao VS (2010) Food Chem 120:1210

    Article  CAS  Google Scholar 

  • Pi F, Shinzawa H, Ozaki Y, Han D (2009) Int Dairy J 19:624

    Article  CAS  Google Scholar 

  • Pierce MM, Wehling R (1994) J Agric Food Chem 42:2830

    Article  CAS  Google Scholar 

  • Pomeranz Y, Meloan CE (1994) Food analysis: Theory and practice, 3rd edn. Chapman & Hall, New York

    Google Scholar 

  • Rodriguez-Otero JL, Hermida M, Centeno J (1997) J Agric Food Chemm 45:2815

    Article  CAS  Google Scholar 

  • Silva MAM, Ferreira MH, Braga JWB, Sena MM (2012) Talanta 89:342

    Article  CAS  Google Scholar 

  • Souza SVC, Junqueira RG (2005) Anal Chim Acta 552:25

    Article  Google Scholar 

  • Teixeira L, Fonseca L, Menezes L (2007) Arq Bras Med Vet Zootec 59:264

    Article  Google Scholar 

  • Thompson M, Ellison SLR, Wood R (2002) Pure Appl Chem 74:835

    Article  CAS  Google Scholar 

  • Valderrama P, Braga JWB, Poppi RJ (2007) J Agric Food Chem 55:8331

    Article  CAS  Google Scholar 

  • Valderrama P, Braga JWB, Poppi RJ (2009) Quim Nova 32:1278

    Article  CAS  Google Scholar 

  • Williams P (2001) Implementation of near-infrared technology. In: Williams P, Norris K (eds) Near-infrared technology in the agricultural and food industries, 2nd edn. American Association of Cereal Chemists Inc., St. Paul

    Google Scholar 

  • Wittrup C, Norgaard L (1998) J Dairy Sci 81:1803

    Article  CAS  Google Scholar 

  • Workman JJ Jr, Weyer L (2008) Practical guide to interpretative near-infrared spectroscopy. CRC, Boca Raton

    Google Scholar 

Download references

Acknowledgments

B.G.B thanks CAPES and CNPq for fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo M. Sena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Botelho, B.G., Mendes, B.A.P. & Sena, M.M. Development and Analytical Validation of Robust Near-Infrared Multivariate Calibration Models for the Quality Inspection Control of Mozzarella Cheese. Food Anal. Methods 6, 881–891 (2013). https://doi.org/10.1007/s12161-012-9498-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-012-9498-z

Keywords

Navigation