Skip to main content

Advertisement

Log in

Current and Potential Biofuel Production from Plant Oils

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Environmental concerns and depletion of fossil fuels along with government policies have led to the search for alternative fuels from various renewable and sustainable feedstocks. This review provides a critical overview of the chemical composition of common commercial plant oils, i.e., palm oil, olive oil, rapeseed oil, castor oil, WCO, and CTO and their recent trends toward potential biofuel production. Plant oils with a high energy content are primarily composed of triglycerides (generally > 95%), accompanied by diglycerides, monoglycerides, and free fatty acids. The heat content of plant oils is close to 90% for diesel fuels. The oxygen content is the most important difference in chemical composition between fossil oils and plant oils. Triglycerides can even be used directly in diesel engines. However, their high viscosity, low volatility, and poor cold flow properties can lead to engine problems. These problems require that plant oils need to be upgraded if they are to be used as a fuel in conventional diesel engines. Biodiesel, biooil, and renewable diesel are the three major biofuels obtained from plant oils. The main constraint associated with the production of biodiesel is the cost and sustainability of the feedstock. The renewable diesel obtained from crude tall oil is more sustainable than biofuels obtained from other feedstocks. The fuel properties of renewable diesel are similar to those of fossil fuels with reduced greenhouse gas emissions. In this review, the chemical composition of common commercial plant oils, i.e., palm oil, olive oil, rapeseed oil, castor oil, and tall oil, are presented. Both their major and minor components are discussed. Their compositions and fuel properties are compared to both fossil fuels and biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ai:

Anteiso

B5:

5% biodiesel blend

B100:

100% biodiesel

BTG:

Biomass to gas

BTL:

Biomass to liquid

CTO:

Crude tall oil

CTOS:

Crude tall oil soap

C12:0 :

Lauric acid

C14:0 :

Myristic acid

C16:0 :

Palmitic acid

C18:0 :

Stearic acid

C18:1 :

Oleic acid

C18:2 :

Linoleic acid

C18:3 :

Linolenic acid

C22:1 :

Erucic acid

DG:

Diglyceride

D2:

No. 2 diesel fuel

FA:

Fatty acid

FAME:

Fatty acid methyl ester

FFA:

Free fatty acid

HHV:

Higher heating value

HVO:

Hydrotreated vegetable oil

L:

Linoleic acid

LLO:

Linoleic-linoleic-oleic acid

Ln:

Linolenic acid

LnLO:

Linolenic-linoleic-oleic acid

LnOO:

Linolenic-oleic-oleic acid

LOO:

Linoleic-oleic-oleic acid

LOP:

Linoleic-oleic-palmitic acid

MG:

Monoglyceride

O:

Oleic acid

OO:

Oleic-oleic acid

OOO:

Oleic-oleic-oleic acid

P:

Palmitic acid

PLO:

Palmitic-linoleic-oleic acid

PLP:

Palmitic-linoleic-palmitic acid

PO:

Palmitic-oleic acid

POL:

Palmitic-oleic-linoleic acid

POO:

Palmitic-oleic-oleic acid

POP:

Palmitic-oleic-palmitic acid

PP:

Palmitic-palmitic acid

PPP:

Palmitic-palmitic-palmitic acid

RA:

Resin acid

sn :

Substituent

TG:

Triglyceride

TOFA:

Tall oil fatty acid

TRL:

Technology readiness level

WCO:

Waste cooking oil

References

  1. Carlsson AS (2009) Plant oils as feedstock alternatives to petroleum—a short survey of potential oil crop platforms. Biochimie 91:665–670. https://doi.org/10.1016/j.biochi.2009.03.021

    Article  PubMed  CAS  Google Scholar 

  2. Ma F, Hanna MA (1999) Biodiesel production: a review 1. Bioresour Technol 70:1–15. https://doi.org/10.1016/S0960-8524(99)00025-5

    Article  CAS  Google Scholar 

  3. Piel WJ (2001) Transportation fuels of the future? Fuel Process Technol 71:167–179. https://doi.org/10.1016/S0378-3820(01)00148-5

    Article  CAS  Google Scholar 

  4. Demirbas A (2003) Fuel conversional aspects of palm oil and sunflower oil. Energy Source 25:457–466. https://doi.org/10.1080/00908310390142451

    Article  CAS  Google Scholar 

  5. Fortes ICP, Baugh PJ (1994) Study of calcium soap pyrolysates derived from Macauba fruit (Acrocomia sclerocarpa M.). Derivatization and analysis by GC/MS and CI-MS. J Anal Appl Pyrolysis 29:153–167. https://doi.org/10.1016/0165-2370(94)07942-0

    Article  CAS  Google Scholar 

  6. Demirbas A (2008) Production of biodiesel from tall oil. Energy Sources Part A 30:1896–1902. https://doi.org/10.1080/15567030701468050

    Article  CAS  Google Scholar 

  7. Vijayaraghavan K, Hemanathan K (2009) Biodiesel production from freshwater algae. Energy Fuel 23:5448–5453. https://doi.org/10.1021/ef9006033

    Article  CAS  Google Scholar 

  8. Dandik L, Aksoy HA (1998) Pyrolysis of used sunflower oil in the presence of sodium carbonate by using fractionating pyrolysis reactor. Fuel Process Technol 57:81–92. https://doi.org/10.1016/S0378-3820(98)00074-5

    Article  CAS  Google Scholar 

  9. Russo D, Dassisti M, Lawlor V, Olabi AG (2012) State of the art of biofuels from pure plant oil. Renew Sustain Energ Rev 16:4056–4070. https://doi.org/10.1016/j.rser.2012.02.024

    Article  CAS  Google Scholar 

  10. Knothe G, Dunn RO, Bagby MO (1997) Biodiesel: the use of vegetable oils and their derivatives as alternative diesel fuels. In: Fuels and chemicals from biomass, vol 666. ACS symposium series. American Chemical Society, pp 172–208. https://doi.org/10.1021/bk-1997-0666.ch010

  11. Huber GW, Corma A (2007) Synergies between bio- and oil refineries for the production of fuels from biomass. Angew Chem Int Ed 46:7184–7201. https://doi.org/10.1002/anie.200604504

    Article  CAS  Google Scholar 

  12. Demirbas A (2008) Biodiesel: a realistic fuel alternative for diesel engines, vol 10. Springer-Verlag, London

    Google Scholar 

  13. Doll KM, Sharma BK, Suarez PAZ, Erhan SZ (2008) Comparing biofuels obtained from pyrolysis, of soybean oil or soapstock, with traditional soybean biodiesel: density, kinematic viscosity, and surface tensions. Energy Fuel 22:2061–2066. https://doi.org/10.1021/ef800068w

    Article  CAS  Google Scholar 

  14. Sugami Y, Minami E, Saka S (2016) Renewable diesel production from rapeseed oil with hydrothermal hydrogenation and subsequent decarboxylation. Fuel 166:376–381. https://doi.org/10.1016/j.fuel.2015.10.117

    Article  CAS  Google Scholar 

  15. Knothe G (2010) Biodiesel and renewable diesel: a comparison. Prog Energy Combust Sci 36:364–373. https://doi.org/10.1016/j.pecs.2009.11.004

    Article  CAS  Google Scholar 

  16. Christopher LP, Kumar H, Zambare VP (2014) Enzymatic biodiesel: challenges and opportunities. Appl Energy 119:497–520. https://doi.org/10.1016/j.apenergy.2014.01.017

  17. Zhang Y, Dubé MA, McLean DD, Kates M (2003) Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour Technol 90:229–240. https://doi.org/10.1016/S0960-8524(03)00150-0

    Article  PubMed  CAS  Google Scholar 

  18. Niemi S, Vauhkonen V, Mannonen S, Ovaska T, Nilsson O, Sirviö K, Heikkilä S, Kiijärvi J (2016) Effects of wood-based renewable diesel fuel blends on the performance and emissions of a non-road diesel engine. Fuel 186:1–10. https://doi.org/10.1016/j.fuel.2016.08.048

    Article  CAS  Google Scholar 

  19. Kumar H (2016) Novel concepts on the recovery of by-products from alkaline pulping. Doctoral Thesis, University of Jyväskylä, Jyväskylä, Finland

  20. Anthonykutty JM, Linnekoski J, Harlin A, Laitinen A, Lehtonen J (2015) Catalytic upgrading of crude tall oil into a paraffin-rich liquid. Biomass Conv Bioref 5:149–159. https://doi.org/10.1007/s13399-014-0132-8

    Article  CAS  Google Scholar 

  21. Gunstone FD (2011) Production and trade of vegetable oils. In: Gunstone FD (ed) Vegetable oils in food technology: composition, properties and uses. Wiley-Blackwell, Oxford, pp 1–24

    Chapter  Google Scholar 

  22. Gunstone F (2004) The chemistry of fats and oils–sources, composition, properties and uses. CRC Press, New York

    Google Scholar 

  23. Hasenhuettl GL (1993) Fats and fatty oils. In: Kirk-Othmer encyclopedia of chemical technology, vol 10. 4 edn. Wiley, Hoboken, pp 252–287

  24. Stoker SH (2001) Lipids. In: Organic and Biological Chemistry. 2 edn. Houghton Mifflin Company, Boston, pp 258–285

  25. Lepri FG, Chaves ES, Vieira MA, Ribeiro AS, Curtius AJ, DeOliveira LCC, DeCampos RC (2011) Determination of trace elements in vegetable oils and biodiesel by atomic spectrometric techniques—a review. Appl Spectrosc Rev 46:175–206. https://doi.org/10.1080/05704928.2010.529628

    Article  CAS  Google Scholar 

  26. Nnorom IC, Ewuzie U (2015) Comparative study of trace metal (Cd, Cr, Cu, Fe, K, Mg, Na, and Zn). Asian J Plant Sci Res 5:22–29

    CAS  Google Scholar 

  27. Sambanthamurthi R, Sundram K, Tan Y-A (2000) Chemistry and biochemistry of palm oil. Prog Lipid Res 39:507–558. https://doi.org/10.1016/S0163-7827(00)00015-1

    Article  PubMed  CAS  Google Scholar 

  28. Fox NJ, Stachowiak GW (2007) Vegetable oil-based lubricants—a review of oxidation. Tribol Int 40:1035–1046. https://doi.org/10.1016/j.triboint.2006.10.001

    Article  CAS  Google Scholar 

  29. Stoker HS (2006) General, organic, and biological chemistry, 4th edn. Houghton Mifflin Company, Boston

    Google Scholar 

  30. Scrimgeour C, Harwood J (2007) Fatty acid and lipid structure. In: Gunstone FD, Harwood JL, Dijkstra AJ (eds) The lipid handbook, 3rd edn. CRC Press, New York, pp 1–36

    Google Scholar 

  31. Pioch D, Vaitilingom G (2005) Palm oil and derivatives: fuels or potential fuels? Lipids 12:161–169. https://doi.org/10.1051/ocl.2005.0161

    Article  CAS  Google Scholar 

  32. Choo YM, Ng MH, Ma AN, Chuah CH, Hashim MA (2005) Application of supercritical fluid chromatography in the quantitative analysis of minor components (carotenes, vitamin E, sterols, and squalene) from palm oil. Lipids 40:429–432. https://doi.org/10.1007/s11745-006-1400-6

    Article  PubMed  CAS  Google Scholar 

  33. Boskou D (2011) Olive oil. In: Gunstone F (ed) Vegetable oils in food technology: composition, properties and uses. Wiley-Blackwell, Oxford, pp 243–272

    Chapter  Google Scholar 

  34. Salvador MD, Aranda F, Fregapane G (1998) Chemical composition of commercial cornicabra virgin olive oil from 1995/96 and 1996/97 crops. J Am Oil Chem Soc 75:1305–1311. https://doi.org/10.1007/s11746-998-0176-7

    Article  CAS  Google Scholar 

  35. Przybylski R (2011) Canola/rapeseed oil. In: Gunstone F (ed) Vegetable oils in food technology: composition, properties and uses. Wiley-Blackwell, Oxford, pp 107–136

    Chapter  Google Scholar 

  36. Karaosmanoğlu F, Akdağ A, Cigizoğlu KB (1997) Biodiesel from rapeseed oil of turkish origin as an alternative fuel. Appl Biochem Biotechnol 61:251–265. https://doi.org/10.1007/bf02787799

    Article  Google Scholar 

  37. Lappi H, Alén R (2011) Pyrolysis of vegetable oil soaps—palm, olive, rapeseed and castor oils. J Anal Appl Pyrolysis 91:154–158. https://doi.org/10.1016/j.jaap.2011.02.003

    Article  CAS  Google Scholar 

  38. Lappi HE, Alén R (2011) Pyrolysis of crude tall oil-derived products. BioRes 6:5121–5138

    CAS  Google Scholar 

  39. Sundram K (2011) Palm oil: chemistry and nutrition updates. Homepage of Malaysian Palm Oil Board (MPOB) http://www.americanpalmoil.com/pdf/DR%20Sundram.pdf. Accessed 02 Apr 2011

  40. Lin SW (2011) Palm oil. In: Gunstone F (ed) Vegetable oils in food technology: composition, properties and uses. Wiley-Blackwell, Oxford, pp 25–58

    Chapter  Google Scholar 

  41. Karmakar A, Karmakar S, Mukherjee S (2010) Properties of various plants and animals feedstocks for biodiesel production. Bioresour Technol 101:7201–7210. https://doi.org/10.1016/j.biortech.2010.04.079

    Article  PubMed  CAS  Google Scholar 

  42. Noor Lida HM, Sundram K, Siew W, Aminah A, Mamot S (2002) TAG composition and solid fat content of palm oil, sunflower oil, and palm kernel olein belends before and after chemical interesterification. J Am Oil Chem Soc 79:1137–1144. https://doi.org/10.1007/s11746-002-0617-0

    Article  Google Scholar 

  43. Gibon V, De Greyt W, Kellens M (2007) Palm oil refining. Eur J Lipid Sci Technol 109:315–335. https://doi.org/10.1002/ejlt.200600307

    Article  CAS  Google Scholar 

  44. Ogunniyi DS (2006) Castor oil: a vital industrial raw material. Bioresour Technol 97:1086–1091. https://doi.org/10.1016/j.biortech.2005.03.028

    Article  PubMed  CAS  Google Scholar 

  45. Naughton FC (1993) Castor oil. In: Kirk-Othmer encyclopedia of chemical technology, vol 5, 4th edn. Wiley, New York, pp 301–317

    Google Scholar 

  46. Ramirez-Tortosa MC, Granados S, Quiles JL (2006) Chemical composition, types and characteristics of olive oil. In: Quiles JL, Ramirez-Tortosa CM, Yaqoob P (eds) Olive oil and health. CAB International, London, pp 45–62

    Chapter  Google Scholar 

  47. Jeong G-T, Park D-H (2006) Batch (one- and two-stage) production of biodiesel fuel from rapeseed oil. In: JD MM, Adney WS, Mielenz JR, Klasson KT (eds) Twenty-seventh symposium on biotechnology for fuels and chemicals. Humana Press, Totowa, pp 668–679. https://doi.org/10.1007/978-1-59745-268-7_54

    Chapter  Google Scholar 

  48. Jeong G-T, Park D-H, Kang C-H, Lee W-T, Sunwoo C-S, Yoon C-H, Choi B-C, Kim H-S, Kim S-W, Lee U-T (2004) Production of biodiesel fuel by transesterification of rapeseed oil. In: Finkelstein M, JD MM, Davison BH, Evans B (eds) Proceedings of the twenty-fifth symposium on biotechnology for fuels and chemicals held may 4–7, 2003, in Breckenridge, CO. Humana Press, Totowa, pp 747–758. https://doi.org/10.1007/978-1-59259-837-3_59

    Chapter  Google Scholar 

  49. Ratnayake W, Daun J (2004) Chemical composition of canola and rapeseed oils. In: Gunstone FD (ed) Rapeseed and canola oil. Production, processing, properties and uses. CRC Press LLC, Boca Raton, pp 37–78

    Google Scholar 

  50. Naughton FC (1974) Production, chemistry, and commercial applications of various chemicals from castor oil. J Am Oil Chem Soc 51:65–71. https://doi.org/10.1007/bf00000015

    Article  CAS  Google Scholar 

  51. Scholz V, da Silva JN (2008) Prospects and risks of the use of castor oil as a fuel. Biomass Bioenergy 32:95–100. https://doi.org/10.1016/j.biombioe.2007.08.004

    Article  CAS  Google Scholar 

  52. Lechner M, Reiter B, Lorbeer E (1999) Determination of tocopherols and sterols in vegetable oils by solid-phase extraction and subsequent capillary gas chromatographic analysis. J Chromatogr 857:231–238. https://doi.org/10.1016/S0021-9673(99)00751-7

    Article  CAS  Google Scholar 

  53. Chakrabarti MH, Ali M (2009) Performance of compression ignition engine with indigenous castor oil bio diesel in Pakistan. NED Univ J Res 6:10–20

    Google Scholar 

  54. Shukla BD, Srivastava PK, Gupta RK (1992) Oil seeds processing technology. Central Institute of Agricultural Engineering, Bhopal, india

  55. Dunford N (2008) Oil and oilseed processing I. Food Technology Fact Sheet, Robert M Kerr Food & Agricultural Products Center 158:1–4

  56. Alén R (2000) Basic chemistry of wood delignification. In: Stenius P (ed) Forest products chemistry. Fapet Oy, Helsinki, pp 58–104

    Google Scholar 

  57. Gullichsen J, Lindeberg H (2000) Byproducts of chemical pulping. In: Gullichsen J, Fogelholm CJ (eds) Chemical Pulping, Paper Making Science and Technology. Fapet Oy, Helsinki, p 375

    Google Scholar 

  58. Soltes EJ, Zinkel DF (1989) Chemistry of rosin. In: Zinkel DF, Russell J (eds) Naval Stores: production, chemistry, utilization. Pulp Chemicals Association, New York, pp 261–320

    Google Scholar 

  59. Holmbom B (1977) Improved gas chromatographic analysis of fatty and resin acid mixtures with special reference to tall oil. J Am Oil Chem Soc 54:289–293. https://doi.org/10.1007/bf02671098

    Article  CAS  Google Scholar 

  60. Holmbom B (1978) The behavior of resin acids during tall oil distillation. J Am Oil Chem Soc 55:876–880. https://doi.org/10.1007/bf02671411

    Article  CAS  Google Scholar 

  61. Huibers DTA (1997) Tall oil. In: Kroschwitz J, Howe-Grant M (eds) Kirk-Othmer encyclopedia of chemical technology 4edn. Wiley, New York, pp 616–622

    Google Scholar 

  62. Holbom B, Avela E (1971) Studies on tall oil from pine and birch 1. Composition of fatty and resin acids in sulfate soaps and in crude tall oil. Acta Acad Aboensis B 31:1–14

    Google Scholar 

  63. Holmbom B, Avela E (1971) Studies on tall oil from pine and birch. Acta Acad Aboensis B 31:1–18

    Google Scholar 

  64. Altıparmak D, Keskin A, Koca A, Gürü M (2007) Alternative fuel properties of tall oil fatty acid methyl ester–diesel fuel blends. Bioresour Technol 98:241–246. https://doi.org/10.1016/j.biortech.2006.01.020

    Article  PubMed  CAS  Google Scholar 

  65. Sharma RK, Bakhshi NN (1991) Upgrading of tall oil to fuels and chemicals over HZSM-5 catalyst using various diluents. Can J Chem Eng 69:1082–1086. https://doi.org/10.1002/cjce.5450690506

    Article  CAS  Google Scholar 

  66. Stigsson L, Naydenov V (2009) Conversion of crude tall oil to renewable feedstock for diesel range fuel compositions. WO Patent 2009131510 A1

  67. Severson RF, Schuller WH, Lawrence RV (1972) Pyrolyses of certain resin acids at 800.deg. J Chem Eng Data 17:250–252. https://doi.org/10.1021/je60053a051

    Article  CAS  Google Scholar 

  68. Kulkarni MG, Dalai AK (2006) Waste cooking oil an economical source for biodiesel: a review. Ind Eng Chem Res 45:2901–2913. https://doi.org/10.1021/ie0510526

    Article  CAS  Google Scholar 

  69. Lam MK, Lee KT, Mohamed AR (2010) Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnol Adv 28:500–518. https://doi.org/10.1016/j.biotechadv.2010.03.002

    Article  PubMed  CAS  Google Scholar 

  70. Sanli H, Canakci M, Alptekin E Characterization of waste frying oils obtained from different facilities. In: World Renewable Energy Congress-Sweden; 8–13 May; 2011; Linköping; Sweden, 2011. Linköping University Electronic Press, pp 479–485

  71. Srivastava A, Prasad R (2000) Triglycerides-based diesel fuels. Renew Sustainable Energy Rev 4:111–133. https://doi.org/10.1016/S1364-0321(99)00013-1

    Article  CAS  Google Scholar 

  72. Shrirame HY, Panwar N, Bamniya B (2011) Bio diesel from castor oil–a green energy option. Low Carbon Economy 2:1–6. https://doi.org/10.4236/lce.2011.21001

    Article  Google Scholar 

  73. Haga N (2004) Vegetable oils as fuel in diesel generating sets. Paper presented at the 10th International Cogeneration, Combined Cycle & Environment Conference and exhibition

  74. Esteban B, Riba J-R, Baquero G, Rius A, Puig R (2012) Temperature dependence of density and viscosity of vegetable oils. Biomass Bioenergy 42:164–171. https://doi.org/10.1016/j.biombioe.2012.03.007

    Article  CAS  Google Scholar 

  75. Agarwal D, Agarwal AK (2007) Performance and emissions characteristics of Jatropha oil (preheated and blends) in a direct injection compression ignition engine. Appl Therm Eng 27:2314–2323. https://doi.org/10.1016/j.applthermaleng.2007.01.009

    Article  CAS  Google Scholar 

  76. Eromosele CO, Paschal NH (2003) Characterization and viscosity parameters of seed oils from wild plants. Bioresour Technol 86:203–205. https://doi.org/10.1016/S0960-8524(02)00147-5

    Article  PubMed  CAS  Google Scholar 

  77. Yalcin H, Toker OS, Dogan M (2012) Effect of oil type and fatty acid composition on dynamic and steady shear rheology of vegetable oils. Journal of oleo science 61:181–187

    Article  PubMed  CAS  Google Scholar 

  78. Hellier P, Ladommatos N, Yusaf T (2015) The influence of straight vegetable oil fatty acid composition on compression ignition combustion and emissions. Fuel 143:131–143. https://doi.org/10.1016/j.fuel.2014.11.021

    Article  CAS  Google Scholar 

  79. Knothe G, Steidley KR (2005) Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel 84:1059–1065. https://doi.org/10.1016/j.fuel.2005.01.016

    Article  CAS  Google Scholar 

  80. Demirbaş A (1998) Fuel properties and calculation of higher heating values of vegetable oils. Fuel 77:1117–1120. https://doi.org/10.1016/S0016-2361(97)00289-5

    Article  Google Scholar 

  81. Mehta PS, Anand K (2009) Estimation of a lower heating value of vegetable oil and biodiesel fuel. Energy Fuel 23:3893–3898. https://doi.org/10.1021/ef900196r

    Article  CAS  Google Scholar 

  82. Lujaji F, Bereczky A, Janosi L, Novak C, Mbarawa M (2010) Cetane number and thermal properties of vegetable oil, biodiesel, 1-butanol and diesel blends. J Therm Anal Calorim 102:1175–1181. https://doi.org/10.1007/s10973-010-0733-9

    Article  CAS  Google Scholar 

  83. Toscano G, Maldini E (2007) Analysis of the physical and chemical charactersistics of vegetable oils as fuel. 2007 38:9. https://doi.org/10.4081/jae.2007.3.39

  84. Coll R, Udas S, Jacoby WA (2001) Conversion of the rosin acid fraction of crude tall oil into fuels and chemicals. Energy Fuel 15:1166–1172. https://doi.org/10.1021/ef010018a

    Article  CAS  Google Scholar 

  85. Lappi H (2012) Production of hydrocarbon-rich biofuels from extractives-derived materials. Doctoral Thesis, University of Jyväskylä, Jyväskylä, Finland

  86. Dorado MP, Ballesteros E, Mittelbach M, López FJ (2004) Kinetic parameters affecting the alkali-catalyzed transesterification process of used olive oil. Energy Fuel 18:1457–1462. https://doi.org/10.1021/ef034088o

    Article  CAS  Google Scholar 

  87. Phan AN, Phan TM (2008) Biodiesel production from waste cooking oils. Fuel 87:3490–3496. https://doi.org/10.1016/j.fuel.2008.07.008

    Article  CAS  Google Scholar 

  88. Stavarache C, Vinatoru M, Maeda Y (2007) Aspects of ultrasonically assisted transesterification of various vegetable oils with methanol. Ultrason Sonochem 14:380–386

    Article  PubMed  CAS  Google Scholar 

  89. Ho KC, Shahbaz K, Rashmi W, Mjalli F, Hashim M, Alnashef I (2015) Removal of glycerol from palm oil-based biodiesel using new ionic liquids analogues. J Eng Sci Technol:98–111

  90. Weaver J, Howell S (2017) Biodiesel industry overview & technical update. http://biodiesel.org/docs/default-source/ffs-basics/biodiesel-industry-and-technical-overview.pdf?sfvrsn=20. Accessed 28 Mar 2017

  91. Lane J (2017) Ethanol and biodiesel: dropping below the production cost of fossil fuels? http://www.biofuelsdigest.com/bdigest/2017/05/18/ethanol-and-biodiesel-dropping-below-the-production-cost-of-fossil-fuels/. Accessed 16 Feb 2018

  92. Hajjari M, Tabatabaei M, Aghbashlo M, Ghanavati H (2017) A review on the prospects of sustainable biodiesel production: a global scenario with an emphasis on waste-oil biodiesel utilization. Renew Sustain Energ Rev 72:445–464. https://doi.org/10.1016/j.rser.2017.01.034

    Article  CAS  Google Scholar 

  93. Mardhiah HH, Ong HC, Masjuki HH, Lim S, Lee HV (2017) A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils. Renew Sustain Energ Rev 67:1225–1236. https://doi.org/10.1016/j.rser.2016.09.036

    Article  CAS  Google Scholar 

  94. Nielsen F, Hill B, deJongh J (2011) Castor (Ricinus communis) potential of castor for bio-fuel production. FACT Foundation:1–15

  95. Mohod AV, Subudhi AS, Gogate PR (2017) Intensification of esterification of non edible oil as sustainable feedstock using cavitational reactors. Ultrason Sonochem 36:309–318. https://doi.org/10.1016/j.ultsonch.2016.11.040

    Article  PubMed  CAS  Google Scholar 

  96. Kumar H, Alén R (2016) Microwave-assisted esterification of tall oil fatty acids with methanol using lignin-based solid catalyst. Energy Fuel 30:9451–9455. https://doi.org/10.1021/acs.energyfuels.6b01718

    Article  CAS  Google Scholar 

  97. Keskin A, Gürü M, Altıparmak D (2007) Biodiesel production from tall oil with synthesized Mn and Ni based additives: effects of the additives on fuel consumption and emissions. Fuel 86:1139–1143. https://doi.org/10.1016/j.fuel.2006.10.021

    Article  CAS  Google Scholar 

  98. Azócar L, Ciudad G, Heipieper HJ, Navia R (2010) Biotechnological processes for biodiesel production using alternative oils. Appl Microbiol Biotechnol 88:621–636. https://doi.org/10.1007/s00253-010-2804-z

    Article  PubMed  CAS  Google Scholar 

  99. Rashed MM, Kalam MA, Masjuki HH, Mofijur M, Rasul MG, Zulkifli NWM (2016) Performance and emission characteristics of a diesel engine fueled with palm, jatropha, and moringa oil methyl ester. Ind Crop Prod 79:70–76. https://doi.org/10.1016/j.indcrop.2015.10.046

    Article  CAS  Google Scholar 

  100. Mahmudul HM, Hagos FY, Mamat R, Adam AA, Ishak WFW, Alenezi R (2017) Production, characterization and performance of biodiesel as an alternative fuel in diesel engines—a review. Renew Sustainable Energy Rev 72:497–509. https://doi.org/10.1016/j.rser.2017.01.001

    Article  CAS  Google Scholar 

  101. Giuliano Albo PA, Lago S, Wolf H, Pagel R, Glen N, Clerck M, Ballereau P (2017) Density, viscosity and specific heat capacity of diesel blends with rapeseed and soybean oil methyl ester. Biomass Bioenergy 96:87–95. https://doi.org/10.1016/j.biombioe.2016.11.009

    Article  CAS  Google Scholar 

  102. Lin L, Cunshan Z, Vittayapadung S, Xiangqian S, Mingdong D (2011) Opportunities and challenges for biodiesel fuel. Appl Energy 88:1020–1031. https://doi.org/10.1016/j.apenergy.2010.09.029

    Article  Google Scholar 

  103. Ozcanli M, Akar MA, Calik A, Serin H (2017) Using HHO (hydroxy) and hydrogen enriched castor oil biodiesel in compression ignition engine. Int J Hydrog Energy 42:23366–23372. https://doi.org/10.1016/j.ijhydene.2017.01.091

    Article  CAS  Google Scholar 

  104. Yaakob Z, Mohammad M, Alherbawi M, Alam Z, Sopian K (2013) Overview of the production of biodiesel from waste cooking oil. Renew Sustain Energ Rev 18:184–193. https://doi.org/10.1016/j.rser.2012.10.016

    Article  CAS  Google Scholar 

  105. Mikulec J, Kleinová A, Cvengroš J, Banič M (2012) Catalytic transformation of tall oil into biocomponent of diesel fuel. Int J Chem Eng 2012. https://doi.org/10.1155/2012/215258

  106. Kiatkittipong W, Phimsen S, Kiatkittipong K, Wongsakulphasatch S, Laosiripojana N, Assabumrungrat S (2013) Diesel-like hydrocarbon production from hydroprocessing of relevant refining palm oil. Fuel Process Technol 116:16–26. https://doi.org/10.1016/j.fuproc.2013.04.018

    Article  CAS  Google Scholar 

  107. Junming X, Jianchun J, Yanju L, Jie C (2009) Liquid hydrocarbon fuels obtained by the pyrolysis of soybean oils. Bioresour Technol 100:4867–4870. https://doi.org/10.1016/j.biortech.2009.04.055

    Article  PubMed  CAS  Google Scholar 

  108. Oasmaa A, van de Beld B, Saari P, Elliott DC, Solantausta Y (2015) Norms, standards, and legislation for fast pyrolysis bio-oils from lignocellulosic biomass. Energy Fuel 29:2471–2484. https://doi.org/10.1021/acs.energyfuels.5b00026

    Article  CAS  Google Scholar 

  109. Chiaramonti D, Prussi M, Buffi M, Rizzo AM, Pari L (2017) Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production. Appl Energy 185:963–972. https://doi.org/10.1016/j.apenergy.2015.12.001

    Article  CAS  Google Scholar 

  110. Lu Q, Li W-Z, Zhu X-F (2009) Overview of fuel properties of biomass fast pyrolysis oils. Energy Convers Manag 50:1376–1383. https://doi.org/10.1016/j.enconman.2009.01.001

    Article  CAS  Google Scholar 

  111. Demirbas A (2010) New biorenewable fuels from vegetable oils. Energy Source 32:628–636. https://doi.org/10.1080/15567030903058832

    Article  CAS  Google Scholar 

  112. Lima DG, Soares VCD, Ribeiro EB, Carvalho DA, Cardoso ÉCV, Rassi FC, Mundim KC, Rubim JC, Suarez PAZ (2004) Diesel-like fuel obtained by pyrolysis of vegetable oils. J Anal Appl Pyrolysis 71:987–996. https://doi.org/10.1016/j.jaap.2003.12.008

    Article  CAS  Google Scholar 

  113. Dandi̇k L, Aksoy HA (1999) Effect of catalyst on the pyrolysis of used oil carried out in a fractionating pyrolysis reactor. Renew Energy 16:1007–1010. https://doi.org/10.1016/S0960-1481(98)00355-3

    Article  Google Scholar 

  114. Abollé A, Planche H, Trokourey A, Gossan A (2017) Energy valorization by continuous catalyst pyrolysis of tropical vegetable oils. Int J Eng Sci:4195–4201

  115. Zhenyi C, Xing J, Shuyuan L, Li L (2004) Thermodynamics calculation of the pyrolysis of vegetable oils. Energ Source 26:849–856. https://doi.org/10.1080/00908310490465902

    Article  CAS  Google Scholar 

  116. Araújo AMdeM, Limo RdeO, Gondim AD, Diniz J, Souza LD, ASd A (2017) Thermal and catalytic pyrolysis of sunflower oil using AlMCM-41. Renew Energy 101:900–906. https://doi.org/10.1016/j.renene.2016.09.058

  117. Zhao X, Wei L, Cheng S, Julson J (2017) Review of heterogeneous catalysts for catalytically upgrading vegetable oils into hydrocarbon biofuels. Catalysts 7:83. https://doi.org/10.3390/catal7030083

    Article  CAS  Google Scholar 

  118. Šimáček P, Kubička D, Šebor G, Pospíšil M (2010) Fuel properties of hydroprocessed rapeseed oil. Fuel 89:611–615. https://doi.org/10.1016/j.fuel.2009.09.017

    Article  CAS  Google Scholar 

  119. Chang C-C, Wan S-W (1947) China’s motor fuels from tung oil. Ind Eng Chem 39:1543–1548

    Article  CAS  Google Scholar 

  120. Demirbaş A (2002) Diesel fuel from vegetable oil via transesterification and soap pyrolysis. Energ Source 24:835–841. https://doi.org/10.1080/00908310290086798

    Article  CAS  Google Scholar 

  121. Fréty R, MdGCd R, Brandão ST, Pontes LA, Padilha JF, Borges LE, Gonzalez WA (2011) Cracking and hydrocracking of triglycerides for renewable liquid fuels: alternative processes to transesterification. J Braz Chem Soc 22:1206–1220. https://doi.org/10.1590/S0103-50532011000700003

    Article  Google Scholar 

  122. Demirbas A (2009) Biofuels securing the planet’s future energy needs. Energy Convers Manag 50:2239–2249. https://doi.org/10.1016/j.enconman.2009.05.010

    Article  CAS  Google Scholar 

  123. Lappi H, Alén R (2012) Pyrolysis of tall oil-derived fatty and resin acid mixtures. ISRN Renewable Energy 2012. https://doi.org/10.5402/2012/409157

  124. Wang Y, Mourant D, Hu X, Zhang S, Lievens C, Li C-Z (2013) Formation of coke during the pyrolysis of bio-oil. Fuel 108:439–444. https://doi.org/10.1016/j.fuel.2012.11.052

    Article  CAS  Google Scholar 

  125. Ringer M, Putsche V, Scahil J (2006) Large-scale pyrolysis oil production: a technology assessment and economic analysis. golden (CO): National Renewable Energy Laboratory; 2006 Nov. Report No. NREL/TP-510-37779. Contract No.: DE-AC36-99-GO10337

  126. Flach B, Lieberz S, Rossetti A (2017) EU Biofuels Annual 2017. https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Biofuels%20Annual_The%20Hague_EU-28_6-19-2017.pdf

  127. Salonen I (2011) Neste oil’s capital markets day and short-term outlook. Neste Oil Corporation. https://www.neste.com/en/neste-oils-capital-markets-day-and-short-term-outlook. Accessed 18 Feb 2018

  128. Cheah KW, Yusup S, Gurdeep Singh HK, Uemura Y, Lam HL (2017) Process simulation and techno economic analysis of renewable diesel production via catalytic decarboxylation of rubber seed oil—a case study in Malaysia. J Environ Manag 203:950–961. https://doi.org/10.1016/j.jenvman.2017.05.053

    Article  CAS  Google Scholar 

  129. Petri J, Marker T (2006) Production of diesel fuel from biorenewable feedstocks. US Patent 20060264684A1

  130. Herskowitz M (2008) Reaction system for production of diesel fuel from vegetable and animals oils. US Patent 20080066374 A1,

  131. Pandarus V, Gingras G, Béland F, Ciriminna R, Pagliaro M (2012) Selective hydrogenation of vegetable oils over Silia Cat Pd (0). Org Process Res Dev 16:1307–1311. https://doi.org/10.1021/op300115r

    Article  CAS  Google Scholar 

  132. Alvarez-Galvan MC, Blanco-Brieva G, Capel-Sanchez M, Morales-delaRosa S, Campos-Martin JM, Fierro JL (2017) Metal phosphide catalysts for the hydrotreatment of non-edible vegetable oils. Catal Today. https://doi.org/10.1016/j.cattod.2017.03.031

  133. Guzman A, Torres JE, Prada LP, Nuñez ML (2010) Hydroprocessing of crude palm oil at pilot plant scale. Catal Today 156:38–43. https://doi.org/10.1016/j.cattod.2009.11.015

    Article  CAS  Google Scholar 

  134. Boonrod B, Prapainainar C, Narataruksa P, Kantama A, Saibautrong W, Sudsakorn K, Mungcharoen T, Prapainainar P (2017) Evaluating the environmental impacts of bio-hydrogenated diesel production from palm oil and fatty acid methyl ester through life cycle assessment. J Clean Prod 142:1210–1221. https://doi.org/10.1016/j.jclepro.2016.07.128

    Article  CAS  Google Scholar 

  135. Huber GW, O’Connor P, Corma A (2007) Processing biomass in conventional oil refineries: production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures. Appl Catal, A 329:120–129. https://doi.org/10.1016/j.apcata.2007.07.002

    Article  CAS  Google Scholar 

  136. Orozco LM, Echeverri DA, Sánchez L, Rios LA (2017) Second-generation green diesel from castor oil: development of a new and efficient continuous-production process. Chem Eng J 322:149–156. https://doi.org/10.1016/j.cej.2017.04.027

    Article  CAS  Google Scholar 

  137. Mikulec J, Cvengroš J, Joríková Ľ, Banič M, Kleinová A (2010) Second generation diesel fuel from renewable sources. J Clean Prod 18:917–926. https://doi.org/10.1016/j.jclepro.2010.01.018

    Article  CAS  Google Scholar 

  138. Laurikko JK, Nylund N-O, Aakko-Saksa P, Mannonen S, Vauhkonen V, Roslund P (2014) Crude tall oil-based renewable diesel in passenger car field test. SAE Technical Paper. https://doi.org/10.4271/2014-01-2774

  139. Almutairi A, Wu D, Guo B, Roskilly AP, Ottley C (2017) Characterization of lubricant degeneration and component deterioration on diesel engine fueling with straight plant oil. Energy Procedia 105:636–641. https://doi.org/10.1016/j.egypro.2017.03.368

    Article  Google Scholar 

  140. Misra RD, Murthy MS (2010) Straight vegetable oils usage in a compression ignition engine—a review. Renew Sustain Energ Rev 14:3005–3013. https://doi.org/10.1016/j.rser.2010.06.010

    Article  CAS  Google Scholar 

  141. Bari S, Lim TH, Yu CW (2002) Effects of preheating of crude palm oil (CPO) on injection system, performance and emission of a diesel engine. Renew Energy 27:339–351. https://doi.org/10.1016/S0960-1481(02)00010-1

    Article  CAS  Google Scholar 

  142. Lin B-F, Huang J-H, Huang D-Y (2009) Experimental study of the effects of vegetable oil methyl ester on DI diesel engine performance characteristics and pollutant emissions. Fuel 88:1779–1785. https://doi.org/10.1016/j.fuel.2009.04.006

    Article  CAS  Google Scholar 

  143. Kalam MA, Masjuki HH (2002) Biodiesel from palmoil—an analysis of its properties and potential. Biomass Bioenergy 23:471–479. https://doi.org/10.1016/S0961-9534(02)00085-5

    Article  CAS  Google Scholar 

  144. Rakopoulos CD, Antonopoulos KA, Rakopoulos DC, Hountalas DT, Giakoumis EG (2006) Comparative performance and emissions study of a direct injection diesel engine using blends of diesel fuel with vegetable oils or bio-diesels of various origins. Energy Convers Manag 47:3272–3287. https://doi.org/10.1016/j.enconman.2006.01.006

    Article  CAS  Google Scholar 

  145. Buyukkaya E (2010) Effects of biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel 89:3099–3105. https://doi.org/10.1016/j.fuel.2010.05.034

    Article  CAS  Google Scholar 

  146. Serrano L, Carreira V, Câmara R, da Silva MG (2012) On-road performance comparison of two identical cars consuming petrodiesel and biodiesel. Fuel Process Technol 103:125–133. https://doi.org/10.1016/j.fuproc.2011.12.012

    Article  CAS  Google Scholar 

  147. Moon G, Lee Y, Choi K, Jeong D (2010) Emission characteristics of diesel, gas to liquid, and biodiesel-blended fuels in a diesel engine for passenger cars. Fuel 89:3840–3846. https://doi.org/10.1016/j.fuel.2010.07.009

    Article  CAS  Google Scholar 

  148. Fontaras G, Karavalakis G, Kousoulidou M, Tzamkiozis T, Ntziachristos L, Bakeas E, Stournas S, Samaras Z (2009) Effects of biodiesel on passenger car fuel consumption, regulated and non-regulated pollutant emissions over legislated and real-world driving cycles. Fuel 88:1608–1617. https://doi.org/10.1016/j.fuel.2009.02.011

    Article  CAS  Google Scholar 

  149. Van de Beld B, Holle E, Florijn J (2013) The use of pyrolysis oil and pyrolysis oil derived fuels in diesel engines for CHP applications. Appl Energy 102:190–197. https://doi.org/10.1016/j.apenergy.2012.05.047

    Article  CAS  Google Scholar 

  150. Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuel 18:590–598. https://doi.org/10.1021/ef034067u

    Article  CAS  Google Scholar 

  151. Fortum (2015) Fortum’s first export batch of Finnish bio-oil to E.ON in Sweden. www.fortum.com/en/mediaroom/pages/fortums-first-export-batch-of-finnish-bio-oil-to-e.on-in-sweden.aspx. Accessed 27 Aug 2017

  152. Toussaint A (2017) BTG-BTL pyrolysis process. www.btg-btl.com/en/technology. Accessed 27 Aug 2017

  153. Kim D, Kim S, Oh S, No S-Y (2014) Engine performance and emission characteristics of hydrotreated vegetable oil in light duty diesel engines. Fuel 125:36–43. https://doi.org/10.1016/j.fuel.2014.01.089

    Article  CAS  Google Scholar 

  154. Birzietis G, Pirs V, Dukulis I, Gailis M (2017) Effect of commercial diesel fuel and hydrotreated vegetable oil blend on automobile performance. Agron Res 15:964–970

    Google Scholar 

  155. Heuser B, Vauhkonen V, Mannonen S, Rohs H, Kolbeck A (2013) Crude tall oil-based renewable diesel as a blending component in passenger car diesel engines. SAE Int J Fuels Lubr 6:817–825. https://doi.org/10.4271/2013-01-2685

    Article  CAS  Google Scholar 

  156. Aatola H, Larmi M, Sarjovaara T, Mikkonen S (2008) Hydrotreated vegetable oil (HVO) as a renewable diesel fuel: trade-off between NOx, particulate emission, and fuel consumption of a heavy duty engine. SAE Int J Engines 1:1251–1262. https://doi.org/10.4271/2008-01-2500

    Article  Google Scholar 

  157. Abbaszaadeh A, Ghobadian B, Omidkhah MR, Najafi G (2012) Current biodiesel production technologies: a comparative review. Energy Convers Manag 63:138–148. https://doi.org/10.1016/j.enconman.2012.02.027

    Article  CAS  Google Scholar 

  158. Sani Y, Daud W, Aziz AA (2012) Biodiesel feedstock and production technologies: successes, challenges and prospects. In: Fang Z (ed) Biodiesel-feedstocks, production and applications. InTech, pp 2514–2381

  159. Balat M, Balat H (2008) A critical review of bio-diesel as a vehicular fuel. Energy Convers Manag 49:2727–2741. https://doi.org/10.1016/j.enconman.2008.03.016

    Article  CAS  Google Scholar 

  160. Verma M, Godbout S, Brar S, Solomatnikova O, Lemay S, Larouche J (2012) Biofuels production from biomass by thermochemical conversion technologies. Int J Chem Eng 2012

  161. Garcia-Nunez JA, Garcia-Perez M, Rodriguez DT, Ramirez NE, Fontanilla C, Stockle C, Amonette J, Frear C, Silva E (2015) Evolution of palm oil mills into biorefineries: technical, and environmental assessment of six biorefinery options. In: ECI, Biorefinery I: Chemicals and Materials from Thermo-Chemical Biomass Conversion and Related Processes, Crete, Greece, ECI Symposium Series

  162. Naylor RL, Higgins MM (2017) The rise in global biodiesel production: implications for food security. Glob Food Sec 16:75–84. https://doi.org/10.1016/j.gfs.2017.10.004

  163. Aghbashlo M, Demirbas A (2016) Biodiesel: hopes and dreads. Biofuel Res J 3:379–379

    Article  Google Scholar 

  164. Ajanovic A (2011) Biofuels versus food production: does biofuels production increase food prices? Energy 36:2070–2076. https://doi.org/10.1016/j.energy.2010.05.019

    Article  Google Scholar 

  165. Abu Bakar SNH, Abu Hasan H, Mohammad AW, Sheikh Abdullah SR, Haan TY, Ngteni R, Yusof KMM (2018) A review of moving-bed biofilm reactor technology for palm oil mill effluent treatment. J Clean Prod 171:1532–1545. https://doi.org/10.1016/j.jclepro.2017.10.100

    Article  CAS  Google Scholar 

  166. Aro T, Fatehi P (2017) Tall oil production from black liquor: challenges and opportunities. Sep Purif Technol 175:469–480. https://doi.org/10.1016/j.seppur.2016.10.027

    Article  CAS  Google Scholar 

  167. Peters D, Stojcheva V (2017) Crude tall oil low ILUC risk assessment-Comparing global supply and demand. http://www.upmbiofuels.com/whats-new/other-publications/Documents/Publications/ecofys-crude-tall-oil-low-iluc-risk-assessment-report.pdf. Accessed 14 Feb 2018

  168. Yang F, Hanna MA, Sun R (2012) Value-added uses for crude glycerol—a byproduct of biodiesel production. Biotechnol Biofuels 5:13. https://doi.org/10.1186/1754-6834-5-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Haider MH, Dummer NF, Knight DW, Jenkins RL, Howard M, Moulijn J, Taylor SH, Hutchings GJ (2015) Efficient green methanol synthesis from glycerol. Nat Chem 7:1028–1032. https://doi.org/10.1038/nchem.2345

    Article  PubMed  CAS  Google Scholar 

  170. Ayre J (2016) Formula E uses recharging generators that run on glycerine. Clean Technica. https://cleantechnica.com/2016/11/04/formula-e-uses-recharging-generators-run-glycerine/. Accessed 21 June 2017

  171. Muggen G (2017) Sustainable transport fuels. btg-btl. https://www.btg-btl.com/en/applications/biofuel. Accessed 26 June 2017

  172. Toussaint A (2017) Heat and power from pyrolysis oil. btg-btl. https://www.btg-btl.com/en/applications/heat-power. Accessed 26 June 2017

  173. Jakkula J, Niemi V, Nikkonen J, Purola VM, Myllyoja J, Aalto P, Lehtonen J, Alopaeus V (2004) Process for producing a hydrocarbon component of biological origin. US Patent 20040230085 A1

  174. Neste (2017) Neste renewable diesel. www.neste.com/na/en/customers/products/renewable-products/neste-my-renewable-diesel. Accessed 27 June 2017

  175. Mannonen S, Nylund N-O (2016) Great results from testing UPM’s wood-based diesel in buses. UPM, Media Relations. www.upmbiofuels.com/whats-new/all-news/Pages/great-results-from-testing-upm-wood-based-diesel-in-buses.aspx. Accessed 27 June 2017

  176. Nousiainen J, Knuuttila P, Rissanen A (2013) Process and apparatus for producing fuel from a biological origin through a single hydroprocessing step in the presence of a NiW catalyst. US Patent 20130067801 A1

  177. Besse X, Schuurman Y, Guilhaume N (2016) Hydrothermal conversion of linoleic acid and ethanol for biofuel production. Appl Catal, A 524:139–148. https://doi.org/10.1016/j.apcata.2016.06.030

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Jane and Aatos Erkko Foundation in Finland is gratefully acknowledged for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hanna Brännström or Hemanathan Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brännström, H., Kumar, H. & Alén, R. Current and Potential Biofuel Production from Plant Oils. Bioenerg. Res. 11, 592–613 (2018). https://doi.org/10.1007/s12155-018-9923-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-018-9923-2

Keywords

Navigation