Skip to main content

Advertisement

Log in

Endophytic Fungal Strains of Soybean for Lipid Production

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Lipids created via microbial biosynthesis are a potential raw material to replace plant-based oil for biodiesel production. Oleaginous microbial species currently available are capable of accumulating high amount of lipids in their cell biomass, but rarely can directly utilize lignocellulosic biomass as substrates. Thus this research focused on the screening and selection of new fungal strains that generate both lipids and hydrolytic enzymes. To search for oleaginous fungal strains in the soybean plant, endophytic fungi and fungi close to the plant roots were studied as a microbial source. Among 33 endophytic fungal isolates screened from the soybean plant, 13 have high lipid content (>20 % dry biomass weight); among 38 fungal isolates screened from the soil surrounding the soybean roots, 14 have high lipid content. Also, five fungal isolates with both high lipid content and promising biomass production were selected for further studies on their cell growth, oil accumulation, lipid content and profile, utilization of various carbon sources, and cellulase production. The results indicate that most strains could utilize different types of carbon sources and some strains accumulated >40 % of the lipids based on the dry cell biomass weight. Among these promising strains, some Fusarium strains specifically showed considerable production of cellulase, which offers great potential for biodiesel production by directly utilizing inexpensive lignocellulosic material as feedstock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Durrett TP, Benning C, Ohlrogge J (2008) Plant triacylglycerols as feedstocks for the production of biofuels. Plant J 54(4):593–607

    Article  CAS  PubMed  Google Scholar 

  2. Vicente G et al (2009) Biodiesel production from biomass of an oleaginous fungus. Biochem Eng J 48(1):22–27

    Article  CAS  Google Scholar 

  3. Cheng Y et al (2009) Alga-based biodiesel production and optimization using sugar cane as the feedstock. Energy Fuels 23(8):4166–4173

    Article  CAS  Google Scholar 

  4. Papanikolaou S et al (2004) Repression of reserve lipid turnover in Cunninghamella echinulata and Mortierella isabellina cultivated in multiple-limited media. J Appl Microbiol 97(4):867–875

    Article  CAS  PubMed  Google Scholar 

  5. Ratledge C, Hopkins S (2006) Lipids from microbial sources. In: Gunstone F (ed) Modifying lipids for Use in foods, Woodhead Publishing, Abington, UK, pp. 80–113

  6. Ratledge C (1991) Microorganisms for lipids. Acta Biotechnol 11(5):429–438

    Article  CAS  Google Scholar 

  7. Xia C et al (2011) A new cultivation method for microbial oil production: cell pelletization and lipid accumulation by Mucor circinelloides. Biotechnol Biofuels 4(1):15

    Article  PubMed Central  PubMed  Google Scholar 

  8. Meng X et al (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34(1):1–5

    Article  Google Scholar 

  9. Zhang JG, Hu B (2012) Solid-state fermentation of Mortierella isabellina for lipid production from soybean hull. Appl Biochem Biotechnol 166(4):1034–1046

    Article  CAS  PubMed  Google Scholar 

  10. Ahamed A, Ahring BK (2011) Production of hydrocarbon compounds by endophytic fungi Gliocladium species grown on cellulose. Bioresour Technol 102(20):9718–9722

    Article  CAS  PubMed  Google Scholar 

  11. Huang C et al (2009) Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresour Technol 100(19):4535–4538

    Article  CAS  PubMed  Google Scholar 

  12. Hu C et al (2009) Effects of biomass hydrolysis by-products on oleaginous yeast Rhodosporidium toruloides. Bioresour Technol 100(20):4843–4847

    Article  CAS  PubMed  Google Scholar 

  13. Chen X et al (2009) Screening of oleaginous yeast strains tolerant to lignocellulose degradation compounds. Appl Biochem Biotechnol 159(3):591–604

    Article  CAS  PubMed  Google Scholar 

  14. Bacon CW, White JF (2000) Microbial endophytes. Marcel Deker, New York

    Google Scholar 

  15. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67(4):491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Stierle A, Strobel G, Stierle D (1993) TAxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260(5105):214–216

    Article  CAS  PubMed  Google Scholar 

  17. Strobel GA et al (2008) The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiology-Sgm 154:3319–3328

    Article  CAS  Google Scholar 

  18. Schulz B et al (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004

    Article  CAS  Google Scholar 

  19. Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23(5):753–771

    Article  CAS  PubMed  Google Scholar 

  20. Aly AH et al (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41(1):1–16

    Article  Google Scholar 

  21. Stadler M, Schulz B (2009) High energy biofuel from endophytic fungi? Trends Plant Sci 14(7):353–355

    Article  CAS  PubMed  Google Scholar 

  22. Santos-Fo FC et al (2011) Endophytic fungi as a source of biofuel precursors. J Microbiol Biotechnol 21(7):728–733

    Article  CAS  PubMed  Google Scholar 

  23. Strobel G et al (1996) Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiology-Uk 142:435–440

    Article  CAS  Google Scholar 

  24. Strobel GA (2003) Endophytes as sources of bioactive products. Microbes Infect 5(6):535–544

    Article  CAS  PubMed  Google Scholar 

  25. Peng XW, Chen HZ (2007) Microbial oil accumulation and cellulase secretion of the endophytic fungi from oleaginous plants. Ann Microbiol 57(2):239–242

    Article  CAS  Google Scholar 

  26. Dey P, Banerjee J, Maiti MK (2011) Comparative lipid profiling of two endophytic fungal isolates — Colletotrichum sp. and Alternaria sp. having potential utilities as biodiesel feedstock. Bioresour Technol 102(10):5815–5823

    Article  CAS  PubMed  Google Scholar 

  27. Venkatesagowda B et al (2012) Diversity of plant oil seed-associated fungi isolated from seven oil-bearing seeds and their potential for the production of lipolytic enzymes. World J Microbiol Biotechnol 28(1):71–80

    Article  CAS  PubMed  Google Scholar 

  28. Indarti E et al (2005) Direct FAME synthesis for rapid total lipid analysis from fish oil and cod liver oil. J Food Compos Anal 18(2–3):161–170

    Article  CAS  Google Scholar 

  29. Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59(2):257–268

    Article  CAS  Google Scholar 

  30. Goswami RS, Kistler HC (2004) Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol 5(6):515–525

    Article  CAS  PubMed  Google Scholar 

  31. Bienapfl JC, Percich JA, Malvick DK (2009) Identification and evaluation of Fusarium species associated with root disease of soybean and corn in Minnesota. Phytopathology 99(6):S12

    Google Scholar 

  32. Saldajeno MGB, Hyakumachi M (2011) The plant growth-promoting fungus Fusarium equiseti and the arbuscular mycorrhizal fungus Glomus mosseae stimulate plant growth and reduce severity of anthracnose and damping-off diseases in cucumber (Cucumis sativus) seedlings. Ann Appl Biol 159(1):28–40

    Article  Google Scholar 

  33. Motlagh MRS (2011) Fusarium equiseti (Corda) Saccardo as biological control agent of barnyardgrass (Echinochloa crus-galli L.) in rice fields. J Food Agr Environ 9(1):310–313

    Google Scholar 

  34. Peever TL et al (2004) Molecular systematics of citrus-associated Alternaria species. Mycologia 96(1):119–134

    Article  CAS  PubMed  Google Scholar 

  35. Pryor BM, Michailides TJ (2002) Morphological, pathogenic, and molecular characterization of Alternaria isolates associated with Alternaria late blight of pistachio. Phytopathology 92(4):406–416

    Article  CAS  PubMed  Google Scholar 

  36. Pitnentel IC et al (2006) Identification and colonization of endophytic fungi from soybean (Glycine max (L.) Merril) under different environmental conditions. Braz Arch Biol Technol 49(5):705–711

    Article  Google Scholar 

  37. Miller WA, Roy KW (1982) Mycoflora of soybean leaves, pods, and seeds in Mississippi. Can J Bot-Rev Can Bot 60(12):2716–2723

    Article  Google Scholar 

  38. Vujanovic V, Mavragani D, Hamel C (2012) Fungal communities associated with durum wheat production system: a characterization by growth stage, plant organ and preceding crop. Crop Prot 37:26–34

    Article  Google Scholar 

  39. Mitra D et al (2012) Value-added oil and animal feed production from corn-ethanol stillage using the oleaginous fungus Mucor circinelloides. Bioresour Technol 107:368–375

    Article  CAS  PubMed  Google Scholar 

  40. Fakas S et al (2009) Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenergy 33(4):573–580

    Article  CAS  Google Scholar 

  41. Takeno S et al (2005) Transformation of oil-producing fungus, Mortierella alpina 1S-4, using zeocin, and application to arachidonic acid production. J Biosci Bioeng 100(6):617–622

    Article  CAS  PubMed  Google Scholar 

  42. Aggelis G (1996) Two alternative pathways for substrate assimilation by Mucor circinelloides. Folia Microbiol 41(3):254–256

    Article  CAS  Google Scholar 

  43. Du Preez JC et al (1995) Production of gamma-linolenic acid by Mucor circinelloides and Mucor rouxii with acetic acid as carbon substrate. Biotechnol Lett 17(9):933–938

    Article  CAS  Google Scholar 

  44. Wynn JP et al (2001) Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpina. Microbiology-Sgm 147:2857–2864

    CAS  Google Scholar 

  45. Papanikolaou S, Komaitis M, Aggelis G (2004) Single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresour Technol 95(3):287–291

    Article  CAS  PubMed  Google Scholar 

  46. Manter DK, Vivanco JM (2007) Use of the ITS primers, ITS1F and ITS4, to characterize fungal abundance and diversity in mixed-template samples by qPCR and length heterogeneity analysis. J Microbiol Methods 71(1):7–14

    Article  CAS  PubMed  Google Scholar 

  47. Manici LM, Caputo F (2010) Soil fungal communities as indicators for replanting new peach orchards in intensively cultivated areas. Eur J Agron 33(3):188–196

    Article  Google Scholar 

  48. Franken P et al (2007) Gene expression analysis of arbuscule development and functioning. Phytochemistry 68(1):68–74

    Article  CAS  PubMed  Google Scholar 

  49. Trillas MI, Segarra G (2009) Interactions between nonpathogenic fungi and plants. In: Van Loon LC (ed) Plant Innate Immunity, Academic Press Ltd, Elsevier Science Ltd, London, pp. 321–359

  50. Wang GH et al (2007) Inoculation with phosphate-solubilizing fungi diversifies the bacterial community in rhizospheres of maize and soybean. Pedosphere 17(2):191–199

    Article  CAS  Google Scholar 

  51. Carvalho DDC et al (2011) Biocontrol of seed pathogens and growth promotion of common bean seedlings by Trichoderma harzianum. Pesq Agrop Brasileira 46(8):822–828

    Article  Google Scholar 

  52. Carapito R et al (2008) Gene expression in Fusarium graminearum grown on plant cell wall. Fungal Genet Biol 45(5):738–748

    Article  CAS  PubMed  Google Scholar 

  53. King BC et al. (2011) Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi. Biotechnol Biofuels 4

  54. Deshpande SK et al (2008) Production of cellulase and xylanase by Trichoderma reesei (QM 9414 mutant), Aspergillus niger and mixed culture by solid state fermentation (SSF) of water hyacinth (Eichhornia crassipes). Indian J Chem Technol 15(5):449–456

    CAS  Google Scholar 

  55. Zhang YHP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24(5):452–481

    Article  CAS  Google Scholar 

  56. Kabel MA et al (2006) Standard assays do not predict the efficiency of commercial cellulase preparations towards plant materials. Biotechnol Bioeng 93(1):56–63

    Article  CAS  PubMed  Google Scholar 

  57. Di Pietro A et al (2003) Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. Mol Plant Pathol 4(5):315–325

    Article  PubMed  Google Scholar 

  58. Ortoneda M et al (2004) Fusarium oxysporum as a multihost model for the genetic dissection of fungal virulence in plants and mammals. Infect Immun 72(3):1760–1766

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Voigt CA, Schafer W, Salomon S (2005) A secreted lipase of Fusarium graminearum is a virulence factor required for infection of cereals. Plant J 42(3):364–375

    Article  CAS  PubMed  Google Scholar 

  60. Hano C et al (2008) Molecular characterization of cell death induced by a compatible interaction between Fusarium oxysporum f. sp linii and flax (Linum usitatissimum) cells. Plant Physiol Biochem 46(5–6):590–600

    Article  CAS  PubMed  Google Scholar 

  61. Christian DA, Hadwiger LA (1989) Pea saponins in the pea Fusarium–Solani interaction. Exp Mycol 13(4):419–427

    Article  CAS  Google Scholar 

  62. L’Haridon F et al (2011) Isolation of differentially expressed genes during interactions between tomato cells and a protective or a non-protective strain of Fusarium oxysporum. Physiol Mol Plant Pathol 76(1):9–19

    Article  Google Scholar 

  63. Papanikolaou S, Aggelis G (2002) Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour Technol 82(1):43–49

    Article  CAS  PubMed  Google Scholar 

  64. Meesters PAEP, Huijberts GNM, Eggink G (1996) High cell density cultivation of the lipid accumulation yeast Cryptococcus curvatus using glycerol as a carbon source. Appl Microbiol Biotechnol 45(5):575–579

    Article  CAS  Google Scholar 

  65. Hassan M et al (1993) Lipid production by an unsaturated fatty acid auxotroph of the oleaginous yeast Apiotrichum curvatum grown in single-stage continuous culture. Appl Microbiol Biotechnol 40(4):483–488

    Article  CAS  Google Scholar 

  66. Alvarez RM et al (1992) Lipid accumulation in Rhodotorula glutinis on sugar cane molasses in single-stage continuous culture. World J Microbiol Biotechnol 8(2):214–215

    Article  CAS  PubMed  Google Scholar 

  67. Johnson V et al (1992) Effect of pH on lipid accumulation by an oleaginous yeast: Rhodotorula glutinis IIP-30. World J Microbiol Biotechnol 8(4):382–384

    Article  CAS  PubMed  Google Scholar 

  68. Dostalek M (1986) Production of lipid from starch by a nitrogen-controlled mixed culture of Saccharomycopsis fibuliger and Rhodosporidium toruloides. Appl Microbiol Biotechnol 24(1):19–23

    Article  CAS  Google Scholar 

  69. Andre A et al (2010) Biotechnological conversions of bio-diesel derived waste glycerol into added-value compounds by higher fungi: production of biomass, single cell oil and oxalic acid. Ind Crop Prod 31(2):407–416

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Yan Yang’s study was partly supported by the Grand-in-Aid program at the University of Minnesota, and the research was supported by Bo Hu’s faculty seed money program at the University of Minnesota.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Yan, M. & Hu, B. Endophytic Fungal Strains of Soybean for Lipid Production. Bioenerg. Res. 7, 353–361 (2014). https://doi.org/10.1007/s12155-013-9377-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-013-9377-5

Keywords

Navigation