Skip to main content
Log in

Recent advances in chemical proteomics: exploring the post-translational proteome

  • Review
  • Published:
Journal of Chemical Biology

Abstract

Identification and quantification of multiple proteins from complex mixtures is a central theme in post-genomic biology. Despite recent progress in high-throughput proteomics, proteomic analysis of post-translationally modified (PTM) proteins remains particularly challenging. This mini-review introduces the emerging field of chemical proteomics and reviews recent advances in chemical proteomic technology that are offering striking new insights into the functional biology of post-translational modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahn NG, Shabb JB, Old WM et al (2007) Achieving in-depth proteomics profiling by mass spectrometry. ACS Chem Biol 2:39–52

    CAS  Google Scholar 

  2. Kislinger T, Emili A (2005) Multidimensional protein identification technology: current status and future prospects. Expert Rev Proteomics 2:27–39

    CAS  Google Scholar 

  3. Reinders J, Lewandrowski U, Moebius J et al (2004) Challenges in mass spectrometry-based proteomics. Proteomics 4:3686–3703

    CAS  Google Scholar 

  4. Berger AB, Vitorino PM, Bogyo M (2004) Activity-based protein profiling: applications to biomarker discovery, in vivo imaging and drug discovery. Am J Pharmacogenomics 4:371–381

    CAS  Google Scholar 

  5. Daub H (2005) Characterisation of kinase-selective inhibitors by chemical proteomics. Biochim Biophys Acta 1754:183–190

    CAS  Google Scholar 

  6. Jeffery DA, Bogyo M (2003) Chemical proteomics and its application to drug discovery. Curr Opin Biotechnol 14:87–95

    CAS  Google Scholar 

  7. Sem DS (2004) Chemical proteomics from a nuclear magnetic resonance spectroscopy perspective. Expert Rev Proteomics 1:165–178

    CAS  Google Scholar 

  8. Sieber SA, Cravatt BF (2006) Analytical platforms for activity-based protein profiling—exploiting the versatility of chemistry for functional proteomics. Chem Commun (Camb) (22):2311–2319

    Google Scholar 

  9. Agard NJ, Baskin JM, Prescher JA et al (2006) A comparative study of bioorthogonal reactions with azides. ACS Chem Biol 1:644–648

    CAS  Google Scholar 

  10. Prescher JA, Bertozzi CR (2005) Chemistry in living systems. Nat Chem Biol 1:13–21

    CAS  Google Scholar 

  11. Carrico IS, Carlson BL, Bertozzi CR (2007) Introducing genetically encoded aldehydes into proteins. Nat Chem Biol 3:321–322

    CAS  Google Scholar 

  12. van Swieten PF, Leeuwenburgh MA, Kessler BM et al (2005) Bioorthogonal organic chemistry in living cells: novel strategies for labeling biomolecules. Org Biomol Chem 3:20–27

    Google Scholar 

  13. Sen Gupta S, Kuzelka J, Singh P et al (2005) Accelerated bioorthogonal conjugation: a practical method for the ligation of diverse functional molecules to a polyvalent virus scaffold. Bioconjug Chem 16:1572–1579

    CAS  Google Scholar 

  14. Kohn M, Breinbauer R (2004) The Staudinger ligation—a gift to chemical biology. Angew Chem Int Ed Engl 43:3106–3116

    Google Scholar 

  15. Speers AE, Cravatt BF (2005) A tandem orthogonal proteolysis strategy for high-content chemical proteomics. J Am Chem Soc 127:10018–10019

    CAS  Google Scholar 

  16. Melnyk O, Fruchart JS, Grandjean C et al (2001) Tartric acid-based linker for the solid-phase synthesis of C-terminal peptide alpha-oxo aldehydes. J Org Chem 66:4153–4160

    CAS  Google Scholar 

  17. Gartner CA, Elias JE, Bakalarski CE et al (2007) Catch-and-release reagents for broadscale quantitative proteomics analyses. J Proteome Res 6:1482–1491

    CAS  Google Scholar 

  18. Verhelst SH, Fonovic M, Bogyo M (2007) A mild chemically cleavable linker system for functional proteomic applications. Angew Chem Int Ed Engl 46:1284–1286

    CAS  Google Scholar 

  19. Srinivasachar K, Neville DM Jr (1989) New protein cross-linking reagents that are cleaved by mild acid. Biochemistry 28:2501–2509

    CAS  Google Scholar 

  20. Baskin JM, Prescher JA, Laughlin ST et al (2007) Copper-free click chemistry for dynamic in vivo imaging. Proc Natl Acad Sci U S A 104:16793–16797

    CAS  Google Scholar 

  21. Chiang KP, Niessen S, Saghatelian A et al (2006) An enzyme that regulates ether lipid signaling pathways in cancer annotated by multidimensional profiling. Chem Biol 13:1041–1050

    CAS  Google Scholar 

  22. Dube DH, Prescher JA, Quang CN et al (2006) Probing mucin-type O-linked glycosylation in living animals. Proc Natl Acad Sci U S A 103:4819–4824

    CAS  Google Scholar 

  23. Prescher JA, Dube DH, Bertozzi CR (2004) Chemical remodelling of cell surfaces in living animals. Nature 430:873–877

    CAS  Google Scholar 

  24. Chang PV, Prescher JA, Hangauer MJ et al (2007) Imaging cell surface glycans with bioorthogonal chemical reporters. J Am Chem Soc 129:8400–8401

    CAS  Google Scholar 

  25. Lemieux GA, De Graffenried CL, Bertozzi CR (2003) A fluorogenic dye activated by the staudinger ligation. J Am Chem Soc 125:4708–4709

    CAS  Google Scholar 

  26. Sawa M, Hsu TL, Itoh T et al (2006) Glycoproteomic probes for fluorescent imaging of fucosylated glycans in vivo. Proc Natl Acad Sci U S A 103:12371–12376

    CAS  Google Scholar 

  27. Martin DD, Vilas GL, Prescher JA et al (2007) Rapid detection, discovery, and identification of post-translationally myristoylated proteins during apoptosis using a bio-orthogonal azidomyristate analog. FASEB J 22:797–806

    Google Scholar 

  28. Alaimo PJ, Shogren-Knaak MA, Shokat KM (2001) Chemical genetic approaches for the elucidation of signaling pathways. Curr Opin Chem Biol 5:360–367

    CAS  Google Scholar 

  29. Elphick LM, Lee SE, Gouverneur V et al (2007) Using chemical genetics and ATP analogues to dissect protein kinase function. ACS Chem Biol 2:299–314

    CAS  Google Scholar 

  30. Charles RL, Schroder E, May G et al (2007) Protein sulfenation as a redox sensor: proteomics studies using a novel biotinylated dimedone analogue. Mol Cell Proteomics 6:1473–1484

    CAS  Google Scholar 

  31. Martinez-Ruiz A, Lamas S (2007) Proteomic identification of S-nitrosylated proteins in endothelial cells. Methods Mol Biol 357:215–223

    CAS  Google Scholar 

  32. Ganesan AK, Kho Y, Kim SC et al (2007) Broad spectrum identification of SUMO substrates in melanoma cells. Proteomics 7:2216–2221

    CAS  Google Scholar 

  33. Zhao Y, Kwon SW, Anselmo A et al (2004) Broad spectrum identification of cellular small ubiquitin-related modifier (SUMO) substrate proteins. J Biol Chem 279:20999–21002

    CAS  Google Scholar 

  34. Bertozzi CR, Kiessling LL (2001) Chemical glycobiology. Science 291:2357–2364

    CAS  Google Scholar 

  35. Parry S, Ledger V, Tissot B et al (2007) Integrated mass spectrometric strategy for characterizing the glycans from glycosphingolipids and glycoproteins: direct identification of sialyl Le(x) in mice. Glycobiology 17:646–654

    CAS  Google Scholar 

  36. Comer FI, Vosseller K, Wells L et al (2001) Characterization of a mouse monoclonal antibody specific for O-linked N-acetylglucosamine. Anal Biochem 293:169–177

    CAS  Google Scholar 

  37. Haltiwanger RS, Kelly WG, Roquemore EP et al (1992) Glycosylation of nuclear and cytoplasmic proteins is ubiquitous and dynamic. Biochem Soc Trans 20:264–269

    CAS  Google Scholar 

  38. Yarema KJ, Bertozzi CR (2001) Characterizing glycosylation pathways. Genome Biol 2:REVIEWS0004

    CAS  Google Scholar 

  39. Kaltgrad E, Sen Gupta S, Punna S et al (2007) Anti-carbohydrate antibodies elicited by polyvalent display on a viral scaffold. ChemBioChem 8:1455–1462

    CAS  Google Scholar 

  40. Saxon E, Bertozzi CR (2000) Cell surface engineering by a modified Staudinger reaction. Science 287:2007–2010

    CAS  Google Scholar 

  41. Saxon E, Bertozzi CR (2001) Chemical and biological strategies for engineering cell surface glycosylation. Annu Rev Cell Dev Biol 17:1–23

    CAS  Google Scholar 

  42. Luchansky SJ, Argade S, Hayes BK et al (2004) Metabolic functionalization of recombinant glycoproteins. Biochemistry 43:12358–12366

    CAS  Google Scholar 

  43. Laughlin ST, Bertozzi CR (2007) Metabolic labeling of glycans with azido sugars and subsequent glycan-profiling and visualization via Staudinger ligation. Nat Protoc 2:2930–2944

    CAS  Google Scholar 

  44. Laughlin ST, Bertozzi CR (2007) Metabolic labeling of glycans with azido sugars and subsequent glycan-profiling and visualization via Staudinger ligation. Nat Protoc 2:2930–2944

    CAS  Google Scholar 

  45. Hsu TL, Hanson SR, Kishikawa K et al (2007) Alkynyl sugar analogs for the labeling and visualization of glycoconjugates in cells. Proc Natl Acad Sci U S A 104:2614–2619

    CAS  Google Scholar 

  46. Hang HC, Yu C, Kato DL et al (2003) A metabolic labeling approach toward proteomic analysis of mucin-type O-linked glycosylation. Proc Natl Acad Sci U S A 100:14846–14851

    CAS  Google Scholar 

  47. Vocadlo DJ, Hang HC, Kim EJ et al (2003) A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proc Natl Acad Sci U S A 100:9116–9121

    CAS  Google Scholar 

  48. Sprung R, Nandi A, Chen Y et al (2005) Tagging-via-substrate strategy for probing O-GlcNAc modified proteins. J Proteome Res 4:950–957

    CAS  Google Scholar 

  49. Nandi A, Sprung R, Barma DK et al (2006) Global identification of O-GlcNAc-modified proteins. Anal Chem 78:452–458

    CAS  Google Scholar 

  50. Khidekel N, Arndt S, Lamarre-Vincent N et al (2003) A chemoenzymatic approach toward the rapid and sensitive detection of O-GlcNAc posttranslational modifications. J Am Chem Soc 125:16162–16163

    CAS  Google Scholar 

  51. Khidekel N, Ficarro SB, Peters EC et al (2004) Exploring the O-GlcNAc proteome: direct identification of O-GlcNAc-modified proteins from the brain. Proc Natl Acad Sci U S A 101:13132–13137

    CAS  Google Scholar 

  52. Fulop N, Marchase RB, Chatham JC (2007) Role of protein O-linked N-acetyl-glucosamine in mediating cell function and survival in the cardiovascular system. Cardiovasc Res 73:288–297

    Google Scholar 

  53. Zachara NE, Hart GW (2006) Cell signaling, the essential role of O-GlcNAc! Biochim Biophys Acta 1761:599–617

    CAS  Google Scholar 

  54. Slawson C, Housley MP, Hart GW (2006) O-GlcNAc cycling: how a single sugar post-translational modification is changing the way we think about signaling networks. J Cell Biochem 97:71–83

    CAS  Google Scholar 

  55. Guinez C, Morelle W, Michalski JC et al (2005) O-GlcNAc glycosylation: a signal for the nuclear transport of cytosolic proteins? Int J Biochem Cell Biol 37:765–774

    CAS  Google Scholar 

  56. Wells L, Whelan SA, Hart GW (2003) O-GlcNAc: a regulatory post-translational modification. Biochem Biophys Res Commun 302:435–441

    CAS  Google Scholar 

  57. Hart GW, Greis KD, Dong LY et al (1995) O-linked N-acetylglucosamine: the “yin–yang” of Ser/Thr phosphorylation? Nuclear and cytoplasmic glycosylation. Adv Exp Med Biol 376:115–123

    CAS  Google Scholar 

  58. Gama CI, Hsieh-Wilson LC (2005) Chemical approaches to deciphering the glycosaminoglycan code. Curr Opin Chem Biol 9:609–619

    CAS  Google Scholar 

  59. Khidekel N, Ficarro SB, Clark PM et al (2007) Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics. Nat Chem Biol 3:339–348

    CAS  Google Scholar 

  60. Rexach JE, Clark PM, Hsieh-Wilson LC (2008) Chemical approaches to understanding O-GlcNAc glycosylation in the brain. Nat Chem Biol 4:97–106

    CAS  Google Scholar 

  61. Pechlivanis M, Kuhlmann J (2006) Hydrophobic modifications of Ras proteins by isoprenoid groups and fatty acids—more than just membrane anchoring. Biochim Biophys Acta 1764:1914–1931

    CAS  Google Scholar 

  62. Resh MD (2004) Membrane targeting of lipid modified signal transduction proteins. Subcell Biochem 37:217–232

    CAS  Google Scholar 

  63. Chen CA, Manning DR (2001) Regulation of G proteins by covalent modification. Oncogene 20:1643–1652

    CAS  Google Scholar 

  64. Price HP, Menon MR, Panethymitaki C et al (2003) Myristoyl-CoA:protein N-myristoyltransferase, an essential enzyme and potential drug target in kinetoplastid parasites. J Biol Chem 278:7206–7214

    CAS  Google Scholar 

  65. Takamune N, Hamada H, Misumi S et al (2002) Novel strategy for anti-HIV-1 action: selective cytotoxic effect of N-myristoyltransferase inhibitor on HIV-1-infected cells. FEBS Lett 527:138–142

    CAS  Google Scholar 

  66. Georgopapadakou NH (2002) Antifungals targeted to protein modification: focus on protein N-myristoyltransferase. Expert Opin Investig Drugs 11:1117–1125

    CAS  Google Scholar 

  67. Ducker CE, Upson JJ, French KJ et al (2005) Two N-myristoyltransferase isozymes play unique roles in protein myristoylation, proliferation, and apoptosis. Mol Cancer Res 3:463–476

    CAS  Google Scholar 

  68. Ducker CE, Upson JJ, French KJ et al (2005) Two N-myristoyltransferase isozymes play unique roles in protein myristoylation, proliferation, and apoptosis. Mol Cancer Res 3:463–476

    CAS  Google Scholar 

  69. Budde C, Schoenfish MJ, Linder ME et al (2006) Purification and characterization of recombinant protein acyltransferases. Methods 40:143–150

    CAS  Google Scholar 

  70. Mitchell DA, Vasudevan A, Linder ME et al (2006) Protein palmitoylation by a family of DHHC protein S-acyltransferases. J Lipid Res 47:1118–1127

    CAS  Google Scholar 

  71. Lam KK, Davey M, Sun B et al (2006) Palmitoylation by the DHHC protein Pfa4 regulates the ER exit of Chs3. J Cell Biol 174:19–25

    CAS  Google Scholar 

  72. Fukata Y, Iwanaga T, Fukata M (2006) Systematic screening for palmitoyl transferase activity of the DHHC protein family in mammalian cells. Methods 40:177–182

    CAS  Google Scholar 

  73. Ducker CE, Draper JM, Xia Z et al (2006) In vitro and cellular assays for palmitoyl acyltransferases using fluorescent lipidated peptides. Methods 40:166–170

    CAS  Google Scholar 

  74. Roth AF, Feng Y, Chen L et al (2002) The yeast DHHC cysteine-rich domain protein Akr1p is a palmitoyl transferase. J Cell Biol 159:23–28

    CAS  Google Scholar 

  75. Heal WP, Wickramasinghe SR, Bowyer PW et al (2008) Site-specific N-terminal labelling of proteins in vitro and in vivo using N-myristoyl transferase and bioorthogonal ligation chemistry. Chem Commun (Camb) (4):480–482

    Google Scholar 

  76. Kostiuk MA, Corvi MM, Keller BO et al (2007) Identification of palmitoylated mitochondrial proteins using a bio-orthogonal azido-palmitate analogue. FASEB J 22:721–732

    Google Scholar 

  77. Hang HC, Geutjes EJ, Grotenbreg G et al (2007) Chemical probes for the rapid detection of fatty-acylated proteins in Mammalian cells. J Am Chem Soc 129:2744–2745

    CAS  Google Scholar 

  78. Roth AF, Wan J, Bailey AO et al (2006) Global analysis of protein palmitoylation in yeast. Cell 125:1003–1013

    CAS  Google Scholar 

  79. Roth AF, Wan J, Green WN et al (2006) Proteomic identification of palmitoylated proteins. Methods 40:135–142

    CAS  Google Scholar 

  80. Lane KT, Beese LS (2006) Thematic review series: lipid posttranslational modifications. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type I. J Lipid Res 47:681–699

    CAS  Google Scholar 

  81. Leung KF, Baron R, Seabra MC (2006) Thematic review series: lipid posttranslational modifications. Geranylgeranylation of Rab GTPases. J Lipid Res 47:467–475

    CAS  Google Scholar 

  82. Flotho C, Kratz C, Niemeyer CM (2007) Targeting RAS signaling pathways in juvenile myelomonocytic leukemia. Curr Drug Targets 8:715–725

    CAS  Google Scholar 

  83. Sebti SM (2005) Protein farnesylation: implications for normal physiology, malignant transformation, and cancer therapy. Cancer Cell 7:297–300

    CAS  Google Scholar 

  84. Konstantinopoulos PA, Karamouzis MV, Papavassiliou AG (2007) Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets. Nat Rev Drug Discov 6:541–555

    CAS  Google Scholar 

  85. Nguyen UT, Cramer J, Gomis J et al (2007) Exploiting the substrate tolerance of farnesyltransferase for site-selective protein derivatization. ChemBioChem 8:408–423

    CAS  Google Scholar 

  86. Dursina B, Reents R, Delon C et al (2006) Identification and specificity profiling of protein prenyltransferase inhibitors using new fluorescent phosphoisoprenoids. J Am Chem Soc 128:2822–2835

    CAS  Google Scholar 

  87. Rose MW, Xu J, Kale TA et al (2005) Enzymatic incorporation of orthogonally reactive prenylazide groups into peptides using geranylazide diphosphate via protein farnesyltransferase: implications for selective protein labeling. Biopolymers 80:164–171(Turquoise)

    CAS  Google Scholar 

  88. Duckworth BP, Chen Y, Wollack JW et al (2007) A universal method for the preparation of covalent protein–DNA conjugates for use in creating protein nanostructures. Angew Chem Int Ed Engl 46:8819–8822

    CAS  Google Scholar 

  89. Duckworth BP, Xu J, Taton TA et al (2006) Site-specific, covalent attachment of proteins to a solid surface. Bioconjug Chem 17:967–974

    CAS  Google Scholar 

  90. Chan Kim S, Kho Y, Barma D et al (2005) A tagging-via-substrate technology for genome-wide detection and identification of farnesylated proteins. Methods Enzymol 407:629–637

    Google Scholar 

  91. Kho Y, Kim SC, Jiang C et al (2004) A tagging-via-substrate technology for detection and proteomics of farnesylated proteins. Proc Natl Acad Sci U S A 101:12479–12484

    CAS  Google Scholar 

  92. Larijani B, Hume AN, Tarafder AK et al (2003) Multiple factors contribute to inefficient prenylation of Rab27a in Rab prenylation diseases. J Biol Chem 278:46798–46804

    CAS  Google Scholar 

  93. Hjerrild M, Gammeltoft S (2006) Phosphoproteomics toolbox: computational biology, protein chemistry and mass spectrometry. FEBS Lett 580:4764–4770

    CAS  Google Scholar 

  94. Ding SJ, Qian WJ, Smith RD (2007) Quantitative proteomic approaches for studying phosphotyrosine signaling. Expert Rev Proteomics 4:13–23

    CAS  Google Scholar 

  95. Liang F, Kumar S, Zhang ZY (2007) Proteomic approaches to studying protein tyrosine phosphatases. Mol Biosyst 3:308–316

    CAS  Google Scholar 

  96. Kehoe JW, Velappan N, Walbolt M et al (2006) Using phage display to select antibodies recognizing post-translational modifications independently of sequence context. Mol Cell Proteomics 5:2350–2363

    CAS  Google Scholar 

  97. Kwon SJ, Choi EY, Seo JB et al (2007) Isolation of the Arabidopsis phosphoproteome using a biotin-tagging approach. Mol Cells 24:268–275

    CAS  Google Scholar 

  98. Leitner A, Lindner W (2006) Chemistry meets proteomics: the use of chemical tagging reactions for MS-based proteomics. Proteomics 6:5418–5434

    CAS  Google Scholar 

  99. Oda Y, Nagasu T, Chait BT (2001) Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat Biotechnol 19:379–382

    CAS  Google Scholar 

  100. Bodenmiller B, Mueller LN, Pedrioli PG et al (2007) An integrated chemical, mass spectrometric and computational strategy for (quantitative) phosphoproteomics: application to Drosophila melanogaster Kc167 cells. Mol Biosyst 3:275–286

    CAS  Google Scholar 

  101. Warthaka M, Karwowska-Desaulniers P, Pflum MK (2006) Phosphopeptide modification and enrichment by oxidation-reduction condensation. ACS Chem Biol 1:697–701

    CAS  Google Scholar 

  102. Zhou H, Watts JD, Aebersold R (2001) A systematic approach to the analysis of protein phosphorylation. Nat Biotechnol 19:375–378

    CAS  Google Scholar 

  103. Kwon SW, Kim SC, Jaunbergs J et al (2003) Selective enrichment of thiophosphorylated polypeptides as a tool for the analysis of protein phosphorylation. Mol Cell Proteomics 2:242–247

    CAS  Google Scholar 

  104. Agard NJ, Prescher JA, Bertozzi CR (2004) A strain-promoted [3 + 2] azide–alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc 126:15046–15047

    CAS  Google Scholar 

  105. Bond MR, Kohler JJ (2007) Chemical methods for glycoprotein discovery. Curr Opin Chem Biol 11:52–58

    CAS  Google Scholar 

  106. Ferri N, Paoletti R, Corsini A (2005) Lipid-modified proteins as biomarkers for cardiovascular disease: a review. Biomarkers 10:219–237

    CAS  Google Scholar 

  107. Kolb HC, Sharpless KB (2003) The growing impact of click chemistry on drug discovery. Drug Discov Today 8:1128–1137

    CAS  Google Scholar 

  108. Burley GA, Gierlich J, Mofid MR et al (2006) Directed DNA metallization. J Am Chem Soc 128:1398–1399

    CAS  Google Scholar 

  109. Kumar R, El-Sagheer A, Tumpane J et al (2007) Template-directed oligonucleotide strand ligation, covalent intramolecular DNA circularization and catenation using click chemistry. J Am Chem Soc 129:6859–6864

    CAS  Google Scholar 

  110. Moorhouse AD, Santos AM, Gunaratnam M et al (2006) Stabilization of G-quadruplex DNA by highly selective ligands via click chemistry. J Am Chem Soc 128:15972–15973

    CAS  Google Scholar 

  111. Sadaghiani AM, Verhelst SH, Bogyo M (2007) Tagging and detection strategies for activity-based proteomics. Curr Opin Chem Biol 11:20–28

    CAS  Google Scholar 

  112. Weerapana E, Speers AE, Cravatt BF (2007) Tandem orthogonal proteolysis-activity-based protein profiling (TOP-ABPP)—a general method for mapping sites of probe modification in proteomes. Nat Protoc 2:1414–1425

    CAS  Google Scholar 

  113. Speers AE, Cravatt BF (2004) Profiling enzyme activities in vivo using click chemistry methods. Chem Biol 11:535–546

    CAS  Google Scholar 

  114. Kumar S, Zhou B, Liang F et al (2004) Activity-based probes for protein tyrosine phosphatases. Proc Natl Acad Sci U S A 101:7943–7948

    CAS  Google Scholar 

  115. Yee MC, Fas SC, Stohlmeyer MM et al (2005) A cell-permeable, activity-based probe for protein and lipid kinases. J Biol Chem 280:29053–29059

    CAS  Google Scholar 

Download references

Acknowledgments

The author thanks the Biotechnology and Biological Sciences Research Council (BBSRC), UK for the award of a David Phillips Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward W. Tate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tate, E.W. Recent advances in chemical proteomics: exploring the post-translational proteome. J Chem Biol 1, 17–26 (2008). https://doi.org/10.1007/s12154-008-0002-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12154-008-0002-6

Keywords

Navigation