Skip to main content
Log in

Multiple G-quadruplex binding ligand induced transcriptomic map of cancer cell lines

  • NUTS and BOLTS
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

The G-quadruplexes (G4s) are a class of DNA secondary structures with guanine rich DNA sequences that can fold into four stranded non-canonical structures. At the genomic level, their pivotal role is well established in DNA replication, telomerase functions, constitution of topologically associating domains, and the regulation of gene expression. Genome instability mediated by altered G4 formation and assembly has been associated with multiple disorders including cancers and neurodegenerative disorders. Multiple tools have also been developed to predict the potential G4 regions in genomes and the whole genome G4 maps are also being derived through sequencing approaches. Enrichment of G4s in the cis-regulatory elements of genes associated with tumorigenesis has accelerated the quest for identification of G4-DNA binding ligands (G4DBLs) that can selectively bind and regulate the expression of such specific genes. In this context, the analysis of G4DBL responsive transcriptome in diverse cancer cell lines is inevitable for assessment of the specificity of novel G4DBLs. Towards this, we assembled the transcripts differentially regulated by different G4DBLs and have also identified a core set of genes regulated in diverse cancer cell lines in response to 3 or more of these ligands. With the mode of action of G4DBLs towards topology shifts, folding, or disruption of G4 structure being currently visualized, we believe that this dataset will serve as a platform for assembly of G4DBL responsive transcriptome for comparative analysis of G4DBLs in multiple cancer cells based on the expression of specific cis-regulatory G4 associated genes in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data availability

The 25,228 temporal differential gene regulation events in response to 7 G4DBLs (with their diverse concentrations and stimulation time points) in six different human cancer cell lines is provided in the ‘.xlsx’ format (Supplementary table 1).

Abbreviations

G4:

G-quadruplex

G4DBLs:

G4-DNA binding ligands

TMPyP4:

5,10,15,20–Tetrakis(N-methyl-4-pyridyl)porphyrin

TMPyP4-PT:

Metallated analogues of TMPyP4 with Zn(II), Pt(II)

360A:

2-N,6-N-Bis(1-methylquinolin-1-ium-3-yl)pyridine-2,6-dicarboxamide

AQ1:

4-[(7-Chloroquinolin-4-yl)amino]-2-(diethylaminomethyl)phenol

CMO3:

Phenanthroline-1,3,6,8 (2H,7H)-tetraone

PhenDC3:

N2,N9-Bis(1-Methylquinolin-3-Yl)-1,10-Phenanthroline-2,9-Dicarboxamide

APTO-253:

L2-(5-fluoro-2-methyl-1H-indol-3-yl)-1H-imidazo[4,5f][1,10]phenanthroline;hydrochloride

References

  • Ahmed AA, Marchetti C, Ohnmacht SA, Neidle S (2020) A G-quadruplex-binding compound shows potent activity in human gemcitabine-resistant pancreatic cancer cells. Sci Rep 10(1):12192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asamitsu S, Bando T, Sugiyama H (2019) Ligand design to acquire specificity to intended G-quadruplex structures. Chemistry 25(2):417–430

    Article  CAS  PubMed  Google Scholar 

  • Bacolla A, Wells RD (2009) Non-B DNA conformations as determinants of mutagenesis and human disease. Mol Carcinog 48(4):273–285

    Article  CAS  PubMed  Google Scholar 

  • Bryan TM (2020) G-quadruplexes at telomeres: Friend or foe? Molecules 25(16):3686

    Article  Google Scholar 

  • Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S (2006) Quadruplex DNA: sequence, topology and structure. Nucl Acids Res 34(19):5402–5415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers VS, Marsico G, Boutell JM, Di Antonio M, Smith GP, Balasubramanian S (2015) High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat Biotechnol 33(8):877–881

    Article  PubMed  Google Scholar 

  • De Magis A, Manzo SG, Russo M, Marinello J, Morigi R, Sordet O, Capranico G (2019) DNA damage and genome instability by G-quadruplex ligands are mediated by R loops in human cancer cells. Proc Natl Acad Sci USA 116(3):816–825

    Article  PubMed  Google Scholar 

  • Gellert M, Lipsett MN, Davies DR (1962) Helix formation by guanylic acid. Proc Natl Acad Sci USA 48:2013–2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Granotier C, Pennarun G, Riou L, Hoffschir F, Gauthier LR, De Cian A, Gomez D, Mandine E, Riou JF, Mergny JL, Mailliet P, Dutrillaux B, Boussin FD (2005) Preferential binding of a G-quadruplex ligand to human chromosome ends. Nucl Acids Res 33(13):4182–4190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray LT, Puig Lombardi E, Verga D, Nicolas A, Teulade-Fichou MP, Londono-Vallejo A, Maizels N (2019) G-quadruplexes sequester free heme in living cells. Cell Chem Biol 26(12):1681-1691 e5

    Article  CAS  PubMed  Google Scholar 

  • Halder R, Riou JF, Teulade-Fichou MP, Frickey T, Hartig JS (2012) Bisquinolinium compounds induce quadruplex-specific transcriptome changes in HeLa S3 cell lines. BMC Res Notes 5(1):1–1

    Google Scholar 

  • Henderson E, Hardin CC, Walk SK, Tinoco I Jr, Blackburn EH (1987) Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine-guanine base pairs. Cell 51(6):899–908

    Article  CAS  PubMed  Google Scholar 

  • Huppert JL, Bugaut A, Kumari S, Balasubramanian S (2008) G-quadruplexes: the beginning and end of UTRs. Nucl Acids Res 36(19):6260–6268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang IP, Mailliet P, Hossard V, Riou JF, Bugaut A, Roger L (2019) Investigating the effect of mono- and dimeric 360A G-quadruplex ligands on telomere stability by single telomere length analysis (STELA). Molecules 24(3):577

    Article  PubMed Central  Google Scholar 

  • Izbicka E, Wheelhouse RT, Raymond E, Davidson KK, Lawrence RA, Sun D, Windle BE, Hurley LH, Von Hoff DD (1999) Effects of cationic porphyrins as G-quadruplex interactive agents in human tumor cells. Cancer Res 59(3):639–644

    CAS  PubMed  Google Scholar 

  • Jana J, Mondal S, Bhattacharjee P, Sengupta P, Roychowdhury T, Saha P, Kundu P, Chatterjee S (2017) Chelerythrine down regulates expression of VEGFA, BCL2 and KRAS by arresting G-Quadruplex structures at their promoter regions. Sci Rep 7:40706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson FB (2020) Fundamentals of G-quadruplex biology. Annu Rep Med Chem 54:3–44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jonchhe S, Pandey S, Emura T, Hidaka K, Hossain MA, Shrestha P, Sugiyama H, Endo M, Mao H (2018) Decreased water activity in nanoconfinement contributes to the folding of G-quadruplex and i-motif structures. Proc Natl Acad Sci U S A 115(38):9539–9544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE (2021) PubChem in 2021: new data content and improved web interfaces. Nucl Acids Res 49(D1):D1388–D1395

    Article  CAS  PubMed  Google Scholar 

  • Law MJ, Lower KM, Voon HP, Hughes JR, Garrick D, Viprakasit V, Mitson M, De Gobbi M, Marra M, Morris A, Abbott A, Wilder SP, Taylor S, Santos GM, Cross J, Ayyub H, Jones S, Ragoussis J, Rhodes D, Dunham I, Higgs DR, Gibbons RJ (2010) ATR-X syndrome protein targets tandem repeats and influences allele-specific expression in a size-dependent manner. Cell 143(3):367–378

    Article  CAS  PubMed  Google Scholar 

  • Local A, Zhang H, Benbatoul KD, Folger P, Sheng X, Tsai CY, Howell SB, Rice WG (2018) APTO-253 stabilizes G-quadruplex DNA, inhibits MYC expression, and induces DNA damage in acute Myeloid Leukemia cells. Mol Cancer Ther 17(6):1177–1186

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Iida K, Nagasawa K (2020) Topologies of G-quadruplex: biological functions and regulation by ligands. Biochem Biophys Res Commun 531(1):3–17

    Article  CAS  PubMed  Google Scholar 

  • Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21(16):3448–3449

    Article  CAS  PubMed  Google Scholar 

  • Maiti S, Chaudhury NK, Chowdhury S (2003) Hoechst 33258 binds to G-quadruplex in the promoter region of human c-myc. Biochem Biophys Res Commun 310(2):505–512

    Article  CAS  PubMed  Google Scholar 

  • Maleki P, Ma Y, Iida K, Nagasawa K, Balci H (2017) A single molecule study of a fluorescently labeled telomestatin derivative and G-quadruplex interactions. Nucl Acids Res 45(1):288–295

    Article  CAS  PubMed  Google Scholar 

  • Marchetti C, Zyner KG, Ohnmacht SA, Robson M, Haider SM, Morton JP, Marsico G, Vo T, Laughlin-Toth S, Ahmed AA, Di Vita G, Pazitna I, Gunaratnam M, Besser RJ, Andrade ACG, Diocou S, Pike JA, Tannahill D, Pedley RB, Evans TRJ, Wilson WD, Balasubramanian S, Neidle S (2018) Targeting multiple effector pathways in pancreatic ductal adenocarcinoma with a G-quadruplex-binding small molecule. J Med Chem 61(6):2500–2517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monchaud D, Teulade-Fichou MP (2008) A hitchhiker’s guide to G-quadruplex ligands. Org Biomol Chem 6(4):627–636

    Article  CAS  PubMed  Google Scholar 

  • O’Hagan MP, Morales JC, Galan MC (2019) Binding and beyond: What else can G-Quadruplex ligands do? Eur J Org Chem 31–32:4995–5017

    Article  Google Scholar 

  • Pennarun G, Granotier C, Gauthier LR, Gomez D, Hoffschir F, Mandine E, Riou JF, Mergny JL, Mailliet P, Boussin FD (2005) Apoptosis related to telomere instability and cell cycle alterations in human glioma cells treated by new highly selective G-quadruplex ligands. Oncogene 24(18):2917–2928

    Article  CAS  PubMed  Google Scholar 

  • Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, Vilo J (2019) g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucl Acids Res 47(W1):W191–W198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reina C, Cavalieri V (2020) Epigenetic modulation of chromatin states and gene expression by G-quadruplex structures. Int J Mol Sci 21(11):4172

    Article  CAS  PubMed Central  Google Scholar 

  • Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29(1):24–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiavone D, Jozwiakowski SK, Romanello M, Guilbaud G, Guilliam TA, Bailey LJ, Sale JE, Doherty AJ (2016) PrimPol Is required for replicative tolerance of G quadruplexes in vertebrate cells. Mol Cell 61(1):161–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sengupta A, Ganguly A, Chowdhury S (2019) Promise of G-Quadruplex structure binding ligands as epigenetic modifiers with anti-cancer effects. Molecules 24(3):582

    Article  PubMed Central  Google Scholar 

  • Tsai YC, Qi H, Lin CP, Lin RK, Kerrigan JE, Rzuczek SG, LaVoie EJ, Rice JE, Pilch DS, Lyu YL, Liu LF (2009) A G-quadruplex stabilizer induces M-phase cell cycle arrest. J Biol Chem 284(34):22535–22543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varizhuk A, Isaakova E, Pozmogova G (2019) DNA G-quadruplexes (G4s) modulate epigenetic (Re)programming and chromatin remodeling: transient genomic G4s assist in the establishment and maintenance of epigenetic marks, while persistent G4s may erase epigenetic marks. BioEssays 41(9):e1900091

    Article  PubMed  Google Scholar 

  • Verma A, Halder K, Halder R, Yadav VK, Rawal P, Thakur RK, Mohd F, Sharma A, Chowdhury S (2008) Genome-wide computational and expression analyses reveal G-quadruplex DNA motifs as conserved cis-regulatory elements in human and related species. J Med Chem 51(18):5641–5649

    Article  CAS  PubMed  Google Scholar 

  • Verma A, Yadav VK, Basundra R, Kumar A, Chowdhury S (2009) Evidence of genome-wide G4 DNA-mediated gene expression in human cancer cells. Nucl Acids Res 37(13):4194–4204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng XH, Nie X, Liu HY, Fang YM, Zhao Y, Xia LX (2016) TMPyP4 promotes cancer cell migration at low doses, but induces cell death at high doses. Sci Rep 6:26592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zorzan E, Da Ros S, Musetti C, Shahidian LZ, Coelho NF, Bonsembiante F, Letard S, Gelain ME, Palumbo M, Dubreuil P, Giantin M, Sissi C, Dacasto M (2016) Screening of candidate G-quadruplex ligands for the human c-KIT promotorial region and their effects in multiple in-vitro models. Oncotarget 7(16):21658–21675

    Article  PubMed  PubMed Central  Google Scholar 

  • Zorzan E, Elgendy R, Giantin M, Dacasto M, Sissi C (2018) Wholetranscriptome profiling of canine and human in vitro models exposed to a G-Quadruplex binding small molecule. Sci Rep 8(1):1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Amjesh Revikumar is a recipient of National Post-Doctoral Fellowship (PDF/2017/001652) from the Science and Engineering Research Board, Department of Science and Technology (DST), Government of India. Rajesh Raju is a recipient of the Young Scientist Award (YSS/2014/000607) from the Science and Engineering Research Board, Department of Science and Technology (DST), Government of India. Anjana Aravind is a recipient of the Junior Research Fellowship from the Council of Scientific & Industrial Research (CSIR), Government of India. Akhina Palollathil is a recipient of Junior Research Fellowship from the University Grants Commission (UGC), Government of India.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amjesh Revikumar or Rajesh Raju.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Revikumar, A., Kashyap, V., Palollathil, A. et al. Multiple G-quadruplex binding ligand induced transcriptomic map of cancer cell lines. J. Cell Commun. Signal. 16, 129–135 (2022). https://doi.org/10.1007/s12079-021-00637-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-021-00637-z

Keywords

Navigation