Skip to main content
Log in

Syringic acid, a phenolic acid, promotes osteoblast differentiation by stimulation of Runx2 expression and targeting of Smad7 by miR-21 in mouse mesenchymal stem cells

  • Research Article
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Syringic acid (SA), a phenolic acid, has been used in Chinese and Indian medicine for treating diabetes but its role in osteogenesis has not yet been investigated. In the present study, at the molecular and cellular levels, we evaluated the effects of SA on osteoblast differentiation. At the cellular level, there was increased alkaline phosphatase (ALP) activity and calcium deposition by SA treatment in mouse mesenchymal stem cells (mMSCs). At the molecular level, SA treatment of these cells stimulated expression of Runx2, a bone transcription factor, and of osteoblast differentiation marker genes such as ALP, type I collagen, and osteocalcin. It is known that Smad7 is an antagonist of TGF-β/Smad signaling and is a negative regulator of Runx2. microRNAs (miRNAs) play a key role in the regulation of osteogenesis genes at the post-transcriptional level and studies have reported that Smad7 is one of the target genes of miR-21. We found that there was down regulation of Smad7 and up regulation of miR-21 in SA-treated mMSCs. We further identified that the 3′-untranslated region (UTR) of Smad7 was directly targeted by miR-21 in these cells. Thus, our results suggested that SA promotes osteoblast differentiation via increased expression of Runx2 by miR-21-mediated down regulation of Smad7. Hence, SA may have potential in orthopedic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ALP:

Alkaline phosphatase

COL-I:

Type I Collagen-I

DMEM:

Dulbecco’s modified eagle’s medium

HDAC4:

Histone deacetylases

MMPs:

Matrix metalloproteinases

mMSC:

mouse Mesenchymal Stem Cell

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

OC:

Osteocalcin

PBS:

Phosphate-buffered saline

RANKL:

Receptor activator of nuclear factor kappa-B ligand

ROS:

Reactive oxygen species

SA:

Syringic acid

TGF-β:

Transforming growth factor- β

TRAP:

Tartrate-resistant acid phosphatase

References

  • Al Mamun MA, Hosen MJ, Islam K, Khatun A, Alam MM, Al-Bari MAA (2015) Tridax procumbens flavonoids promote osteoblast differentiation and bone formation. Biol Res 48(65)

  • Al-Obaidi MM, Al-Bayaty FH, Al Batran R, Hussaini J, Khor GH (2014) Impact of ellagic acid in bone formation after tooth extraction: an experimental study on diabetic rats. Sci World J: https://doi.org/10.1155/2014/908098

  • Arumugam B, Vairamani M, Partridge NC, Selvamurugan N (2017) Characterization of Runx2 phosphorylation sites required for TGF-β1-mediated stimulation of matrix Metalloproteinase-13 expression in osteoblastic cells. J Cell Physiol https://doi.org/10.1002/jcp.25964

  • Auh QS, Park KR, Yun HM, Lim HC, Kim GH, Lee DS, Kim YC, Oh H, Kim EC (2016) Sulfuretin promotes osteoblastic differentiation in primary cultured osteoblasts and in vivo bone healing. Oncotarget 7(48):78320

    Article  PubMed  PubMed Central  Google Scholar 

  • Baselga-Escudero L, Blade C, Ribas-Latre R, Casanova E, Susarez M, Torres JL, Salvado MJ, Arola L, Arola-Arnal A (2014) Resveratrol and EGCG bind directly and distinctively to miR-33a and miR-122 and modulate divergently their levels in hepatic cells. Nucleic Acids Res 42:882–892

    Article  PubMed  CAS  Google Scholar 

  • Bir FD, Dinçkan N, Güven Y, Baş F, Altunoglu U, Kuvvetli SS, Poyrazoglu S, Toksoy G, Kayserili H, Uyguner ZO (2017) Cleidocranial dysplasia: clinical, endocrinologic and molecular findings in 15 patients from 11 families. Eur J Med Genet 60(3):163–168

    Article  Google Scholar 

  • Boonrungsiman S, Gentleman E, Carzaniga R, Evans ND, McComb DW, Porter AE, Stevens MM (2012) The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation. Proc Natl Acad Sci USA 109(35):14170–14175

    Article  PubMed  Google Scholar 

  • Boudin E, Van Hul W (2017) Mechanisms in endocrinology: genetics of human bone formation. Eur J Endocrinol 177(2):R69–R83

    Article  PubMed  CAS  Google Scholar 

  • Bradley EW, Carpio LR, Van Wijnen AJ, McGee-Lawrence ME, Westendorf JJ (2015) Histone deacetylases in bone development and skeletal disorders. Physiol Rev 95(4):1359–1381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cardoso BM, Dupont J, Castanhinha S, Ejarque-Albuquerque M, Pereira S, Miltenberger-Miltenyi G, Oliveira G (2010) Cleidocranial dysplasia with severe parietal bone dysplasia: a new (p. Val124Serfs) RUNX2 mutation. Clin Dysmorphol 19(3):150–152

    Article  PubMed  Google Scholar 

  • Carpio LR, Westendorf JJ (2016) Histone deacetylases in cartilage homeostasis and osteoarthritis. Curr Rheumatol Rep 18(8):1–9

    Article  CAS  Google Scholar 

  • Carpio LR, Bradley EW, Westendorf JJ (2017) Histone deacetylase 3 suppresses Erk phosphorylation and matrix metalloproteinase (Mmp)-13 activity in chondrocytes. Connect Tissue Res 58(1):27–36

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Deng C, Li YP (2012) TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 8(2):272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Q, Liu C, Chen J, Xiong F, Wu B (2017a) A novel, complex RUNX2 gene mutation causes cleidocranial dysplasia. Bmc Med Genet 18(1):13

    PubMed  PubMed Central  Google Scholar 

  • Chen X, Wang Z, Duan N, Zhu G, Schwarz EM, Xie C (2017b) Osteoblast–osteoclast interactions. Connect Tissue Res 23:1–9

    Article  CAS  Google Scholar 

  • Choi YH, Han Y, Jin SW, Lee GH, Kim GS, Lee DY, Chung YC, Lee KY, Jeong HG (2017) Pseudoshikonin I enhances osteoblast differentiation by stimulating Runx2 and Osterix. J Cell Biochemhttps://doi.org/10.1002/jcb.26238

  • Crane JL, Cao X (2014) Bone marrow mesenchymal stem cells and TGF-β signaling in bone remodeling. J Clin Invest 124(2):466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dai J, Li Y, Zhou H, Chen J, Chen M, Xiao Z (2013) Genistein promotion of osteogenic differentiation through BMP2/SMAD5/RUNX2 signaling. Int J Biol Sci 9(10):1089–1098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dhivya S, Saravanan S, Sastry TP, Selvamurugan N (2015) Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo. J Nanobiotechnol 13(1):40

    Article  CAS  Google Scholar 

  • Du K, Li Z, Fang X, Cao T, Xu Y (2017) Ferulic acid promotes osteogenesis of bone marrow-derived mesenchymal stem cells by inhibiting MicroRNA-340 to induce β-catenin expression through hypoxia. Eur J Cell Biol S0171-9335(17):30102–30104

    Google Scholar 

  • Dudaric L, Fuzinac-Smojver A, Muhvic D, Giacometti J (2015) The role of polyphenols on bone metabolism in osteoporosis. Food Res Int 77:290–298

    Article  CAS  Google Scholar 

  • Eliseev RA, Schwarz EM, Zuscik MJ, O'keefe RJ, Drissi H, Rosier RN (2006) Smad7 mediates inhibition of Saos2 osteosarcoma cell differentiation by NFκB. Exp Cell Res 312(1):40–50

    Article  PubMed  CAS  Google Scholar 

  • Fan JZ, Yang X, Bi ZG (2015) The effects of 6-gingerol on proliferation, differentiation, and maturation of osteoblast-like MG-63 cells. Braz J Med Biol Res 48(7):637–643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fang S, Deng Y, Gu P, Fan X (2015) MicroRNAs regulate bone development and regeneration. Int J Mol Sci 8:227–253

    Google Scholar 

  • Feng Y, Su L, Zhong X, Guohong W, Xiao H, Li Y, Xiu L (2016) Exendin-4 promotes proliferation and differentiation of MC3T3-E1 osteoblasts by MAPKs activation. J Mol Endocrinol 56(3):189–199

    Article  PubMed  CAS  Google Scholar 

  • Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simoes MJ, Cerri PS (2015) Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int. https://doi.org/10.1155/2015/421746

  • Gaoli X, Yi L, Lili W, Qiutao S, Guang H, Zhiyuan G (2017) Effect of naringin combined with bone morphogenetic protein-2 on the proliferation and differentiation of MC3T3-E1 cells. W China J Stomatol 1;35(3):275

  • Gu Q, Cai Y, Huang C, Shi Q, Yang H (2012) Curcumin increases rat mesenchymal stem cell osteoblast differentiation but inhibits adipocyte differentiation. Pharmacogn Mag 8(31):202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo AJ, Choi RC, Cheung AW, Chen AP, Xu SL, Dong TT, Chen JJ, Tsim KW (2011) Baicalin, a flavone, induces the differentiation of cultured osteoblasts an action via the Wnt/β-catenin signaling pathway. J Biol Chem 286:27882–27893

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo AJ, Choi RC, Zheng KY, Chen VP, Dong TT, Wang ZT, Vollmer G, Lau DT, Tsim KW (2012) Kaempferol as a flavonoid induces osteoblastic differentiation via estrogen receptor signaling. Chin Med 7(1):10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harada H, Tagashira S, Fujiwara M, Ogawa S, Katsumata T, Yamaguchi A, Komori T, Nakatsuka M (1999) Cbfa1 isoforms exert functional differences in osteoblast differentiation. J Biol Chem 274(11):6972–6978

    Article  PubMed  CAS  Google Scholar 

  • Horbelt D, Denkis A, Knaus P (2012) A portrait of transforming growth factor β superfamily signalling: background matters. Int J Biochem Cell B 44(3):469–474

    Article  CAS  Google Scholar 

  • Hsu YL, Liang HL, Hung CH, Kuo PL (2009) Syringetin, a flavonoid derivative in grape and wine, induces human osteoblast differentiation through bone morphogenetic protein-2/extracellular signal-regulated kinase 1/2 pathway. Mol Nutr Food Res 53(11):1452–1461

    Article  PubMed  CAS  Google Scholar 

  • Hu Z, Wang Y, Sun Z, Wang H, Zhou H, Zhang L, Zhang S, Cao X (2015) miRNA-132-3p inhibits osteoblast differentiation by targeting Ep300 in simulated microgravity. Sci Rep 5:18655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hug BA (2004) HDAC4: a corepressor controlling bone development. Cell 119(4):448–449

    Article  PubMed  CAS  Google Scholar 

  • Ishida W, Hamamoto T, Kusanagi K, Yagi K, Kawabata M, Takehara K, Sampath TK, Kato M, Miyazono K (2000) Smad6 is a Smad1/5-induced Smad inhibitor characterization of bone morphogenetic protein-responsive element in the mouse Smad6 promoter. J Biol Chem 275(9):6075–6079

    Article  PubMed  CAS  Google Scholar 

  • Iwai T, Murai J, Yoshikawa H, Tsumaki N (2008) Smad7 inhibits chondrocyte differentiation at multiple steps during endochondral bone formation and down-regulates p38 MAPK pathways. J Biol Chem 283:27154–27164

    Article  PubMed  CAS  Google Scholar 

  • Javed A, Afzal F, Bae JS, Gutierrez S, Zaidi K, Pratap J, Van Wijnen AJ, Stein JL, Stein GS, Lian JB (2009) Specific residues of RUNX2 are obligatory for formation of BMP2-induced RUNX2-SMAD complex to promote osteoblast differentiation. Cells Tissues Organs 189(1–4):133–137

    Article  PubMed  CAS  Google Scholar 

  • Jeon EJ, Lee KY, Choi NS, Lee MH, Kim HN, Jin YH, Ryoo HM, Choi JY, Yoshida M, Nishino N, Oh BC (2006) Bone morphogenetic protein-2 stimulates Runx2 acetylation. J Biol Chem 281(24):16502–16511

    Article  PubMed  CAS  Google Scholar 

  • Jia J, Feng X, Xu W, Yang S, Zhang Q, Liu X, Feng Y, Dai Z (2014) MiR-17-5p modulates osteoblastic differentiation and cell proliferation by targeting SMAD7 in non-traumatic osteonecrosis. Exp Mol Med 46(7):e107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jung YJ, Bae HS, Ryoo HM, Baek SH (2017) A novel RUNX2 mutation in exon 8, G462X, in a patient with Cleidocranial dysplasia. J Cell Biochem https://doi.org/10.1002/jcb.26283

  • Kamiya Y, Miyazono K, Miyazawa K (2010) Smad7 inhibits transforming growth factor-β family type I receptors through two distinct modes of interaction. J Bio Chem 285(40):30804–30813

    Article  CAS  Google Scholar 

  • Karsenty G, Kronenberg HM, Settembre C (2009) Genetic control of bone formation. Annu Rev Cell Dev Biol:629–648

  • Katsimbri P (2017) The biology of normal bone remodelling. Eur J Cancer Care https://doi.org/10.1111/ecc.12740

  • Kim YJ, Bae YC, Suh KT, Jung JS (2006) Quercetin, a flavonoid, inhibits proliferation and increases osteogenic differentiation in human adipose stromal cells. Biochem Pharmacol 72(10):1268–1278

    Article  PubMed  CAS  Google Scholar 

  • Kim KM, Park SJ, Jung SH, Kim EJ, Jogeswar G, Ajita J, Rhee Y, Kim CH, Lim SK (2012) miR-182 is a negative regulator of osteoblast proliferation, differentiation, and skeletogenesis through targeting FoxO1. J Bone Miner Res 27(8):1669–1679

    Article  PubMed  CAS  Google Scholar 

  • Komori T (2010) Regulation of osteoblast differentiation by Runx2. Adv Exp Med Biol 658:43–49

  • Kumar JP, Lakshmi L, Jyothsna V, Balaji DR, Saravanan S, Moorthi A, Selvamurugan N (2014) Synthesis and characterization of diopside particles and their suitability along with chitosan matrix for bone tissue engineering in vitro and in vivo. J Biomed Nanotechnol 10(6):970–981

    Article  PubMed  CAS  Google Scholar 

  • La S, Messer JG, Hopkins RG, Kipp DE (2013) Quercetin protects osteoblast development in the presence of oxidative stress in fetal rat calvaria cells. FASEB J:862–818

  • Leena RS, Vairamani M, Selvamurugan N (2017) Alginate/gelatin scaffolds incorporated with Silibinin-loaded chitosan nanoparticles for bone formation in vitro. Colloids Surf B 158:308–318

    Article  CAS  Google Scholar 

  • Leotoing L, Davicco MJ, Lebecque P, Wittrant Y, Coxam V (2014) The flavonoid fisetin promotes osteoblasts differentiation through Runx2 transcriptional activity. Mol Nutr Food Res 58:1239–1248

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Zhang D, Wang Y (2013) MiR-21/Smad 7 signaling determines TGF-β1-induced CAF formation. Sci Rep 3(2038)

  • Li N, Lee WY, Lin SE, Ni M, Zhang T, Huang XR, Lan HY, Li G (2014) Partial loss of Smad7 function impairs bone remodeling, osteogenesis and enhances osteoclastogenesis in mice. Bone 67:46–55

    Article  PubMed  CAS  Google Scholar 

  • Li J, Hao L, Wu J, Zhang J, Su J (2016) Linarin promotes osteogenic differentiation by activating the BMP-2/RUNX2 pathway via protein kinase a signaling. Int J Mol Med 37(4):901–910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lian JB, Stein GS, Van Wijnen AJ, Stein JL, Hassan MQ, Gaur T, Zhang Y (2012) MicroRNA control of bone formation and homeostasis. Nat Rev Endocrinol 8(4):212–227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin L, Gan H, Zhang H, Tang W, Sun Y, Tang X, Kong D, Zhou J, Wang Y, Zhu Y (2014) MicroRNA-21 inhibits SMAD7 expression through a target sequence in the 3'untranslated region and inhibits proliferation of renal tubular epithelial cells. Mol Med Rep 10(2):707–712

    Article  PubMed  CAS  Google Scholar 

  • Ling M, Huang P, Islam S, Heruth DP, Li X, Zhang LQ, Li DY, Hu Z, Ye SQ (2017) Epigenetic regulation of Runx2 transcription and osteoblast differentiation by nicotinamide phosphoribosyltransferase. Cell Biosci 7(1):27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu G, Friggeri A, Yang Y, Milosevic J, Ding Q, Thannickal VJ, Kaminski N, Abraham E (2010) miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med 207(8):1589–1597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lou Y, Javed A, Hussain S, Colby J, Frederick D, Pratap J, Xie R, Gaur T, Van Wijnen AJ, Jones SN, Stein GS (2008) A Runx2 threshold for the cleidocranial dysplasia phenotype. Hum Mol Genet 18(3):556–568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo H, Gao H, Liu F, Qiu B (2017) Regulation of Runx2 by microRNA-9 and microRNA-10 modulates the osteogenic differentiation of mesenchymal stem cells. Int J Mol Med 39(4):1046–1052

    Article  PubMed  CAS  Google Scholar 

  • McClelland AD, Herman-Edelstein M, Komers R, Jha JC, Winbanks CE, Hagiwara S, Gregorevic P, Kantharidis P, Cooper ME (2015) miR-21 promotes renal fibrosis in diabetic nephreopathy by targeting PTEN and SMAD7. Clin Sci 129(12):1237–1249

    Article  PubMed  CAS  Google Scholar 

  • Milenkovic D, Deval C, Gouranton E, Landrier JF, Scalbert A, Morand C, Mazur A (2012) Modulation of miRNA expression by dietary polyphenols in apoE deficient mice: a new mechanism of the action of polyphenols. PLoS One 7:e29837

  • Moorthi A, Vimalraj S, Chaudhary A, He Z, Partridge NC, Selvamurugan N (2013) Expression of MicroRNA-30c and its target genes by nano-bioglass ceramic-treatment in human osteoblastic cells. Int J Biol Macromol 56:181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muthukumaran J, Srinivasan S, Venkatesan RS, Ramachandran V, Muruganathan U (2013) Syringic acid, a novel natural phenolic acid, normalizes hyperglycemia with special reference to glycoprotein components in experimental diabetic rats. J Acute Dis 2(4):304–309

    Article  Google Scholar 

  • Muthusami S, Senthilkumar K, Vignesh C, Ilangovan R, Stanley J, Selvamurugan N, Srinivasan N (2011) Effects of Cissus Quadrangularis on the proliferation, differentiation and matrix mineralization of human osteoblast like SaOS-2 cells. J Cell Biochem 112(4):1035–1045

    Article  PubMed  CAS  Google Scholar 

  • Nakashima T (2016) Bone homeostasis and Mechano biology. Clin Calcium 26(12):1685–1695

    PubMed  Google Scholar 

  • Obri A, Makinistoglu MP, Zhang H, Karsenty G (2014) HDAC4 integrates PTH and sympathetic signaling in osteoblasts. J Cell Biol 205(6):771–780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ono T, Takayanagi H (2017) Osteoimmunology in bone fracture healing. Curr Osteo Rep 15(4):367–375

    Article  Google Scholar 

  • Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longev 2:270–278

    Article  Google Scholar 

  • Parasramka MA, Ho E, Williams DE, Dashwood RH (2012) MicroRNAs, diet, and cancer: new mechanistic insights on the epigenetic actions of phytochemicals. Mol Carcinog 5:213–230

    Article  CAS  Google Scholar 

  • Raggatt LJ, Partridge NC (2010) Cellular and molecular mechanisms of bone remodeling. J Biol Chem 285(33):25103–25108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sainitya R, Sriram M, Kalyanaraman V, Dhivya S, Saravanan S, Vairamani M, Sastry TP, Selvamurugan N (2015) Scaffolds containing chitosan/carboxymethyl cellulose/mesoporous wollastonite for bone tissue engineering. Int J Biol Macromol 80:481–488

    Article  PubMed  CAS  Google Scholar 

  • Santangelo C, Vari R, Scazzocchio B, Di Benedetto R, Filesi C, Masella R (2007) Polyphenols, intracellular signalling and inflammation. Ann I Super Sanita 43:394

    CAS  Google Scholar 

  • Saravanan S, Vimalraj S, Vairamani M, Selvamurugan N (2015) Role of mesoporous wollastonite (calcium silicate) in mesenchymal stem cell proliferation and osteoblast differentiation: a cellular and molecular study. J Biomed Nanotechnol 11(7):1124–1138

    Article  PubMed  CAS  Google Scholar 

  • Saravanan S, Chawla A, Vairamani M, Sastry TP, Subramanian KS, Selvamurugan N (2017) Scaffolds containing chitosan, gelatin and graphene oxide for bone tissue regeneration in vitro and in vivo. Int J Biol Macromol 8130(16):32105–32105

    Google Scholar 

  • Selvamurugan N, Kwok S, Vasilov A, Jefcoat SC, Partridge NC (2007) Effects of BMP-2 and pulsed electromagnetic field (PEMF) on rat primary osteoblastic cell proliferation and gene expression. J Orthop Res 25(9):1213–1220

    Article  PubMed  CAS  Google Scholar 

  • Selvamurugan N, He Z, Rifkin D, Dabovic B, Partridge NC (2017) Pulsed electromagnetic field regulates MicroRNA 21 expression to activate TGF-β signaling in human bone marrow stromal cells to enhance osteoblast differentiation. Stem Cells Int https://doi.org/10.1155/2017/2450327

  • Sera SR, zur Nieden NI (2017) MicroRNA regulation of skeletal development. Curr Osteoporos Rep 20:1–4

    Google Scholar 

  • Shibata A, Machida J, Yamaguchi S, Kimura M, Tatematsu T, Miyachi H, Matsushita M, Kitoh H, Ishiguro N, Nakayama A, Higashi Y (2015) Characterisation of novel RUNX2 mutation with alanine tract expansion from Japanese cleidocranial dysplasia patient. Mutagenesis 31(1):61–67

    PubMed  Google Scholar 

  • Shimazu J, Wei J, Karsenty G (2016) Smurf1 inhibits osteoblast differentiation, bone formation, and glucose homeostasis through serine 148. Cell Rep 15(1):27–35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shimizu E, Selvamurugan N, Westendorf JJ, Olson EN, Partridge.NC (2010) HDAC4 represses matrix metalloproteinase-13 transcription in osteoblastic cells, and parathyroid hormone controls this repression. J Biol Chem 285(13)9616–9626

  • Shimizu E, Nakatani T, He Z, Partridge NC (2014) Parathyroid hormone regulates histone deacetylase (HDAC) 4 through protein kinase A-mediated phosphorylation and dephosphorylation in osteoblastic cells. J Biol Chem 289(31):21340–21350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh KB, Dixit M, Dev K, Maurya R, Singh D (2017) Formononetin, a methoxy isoflavone, enhances bone regeneration in a mouse model of cortical bone defect. Br J Nutr 117(11):1511–1522

    Article  PubMed  CAS  Google Scholar 

  • Sowjanya JA, Singh J, Mohita T, Sarvanan S, Moorthi A, Srinivasan N, Selvamurugan N (2013) Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering. Colloids Surf B 109:294–300

    Article  CAS  Google Scholar 

  • Stevens MM (2008) Biomaterials for bone tissue engineering. Mater Today 11:18–25

    Article  CAS  Google Scholar 

  • Sun X, Wang X, Zhang C, Liu Y, Yang X, Yan W, Liu Z, Wang Y, Zheng S (2016) RUNX2 mutation impairs bone remodelling of dental follicle cells and periodontal ligament cells in patients with cleidocranial dysplasia. Mutagenesis 31(6):677–685

    Article  PubMed  CAS  Google Scholar 

  • Tang X, Lin J, Wang G, Lu J (2017) MicroRNA-433-3p promotes osteoblast differentiation through targeting DKK1 expression. PloS One 12(6):e0179860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tou JC (2015) Resveratrol supplementation affects bone acquisition and osteoporosis: pre-clinical evidence toward translational diet therapy. BBA-Mol Basis Dis 1852(6):1186–1194

    Article  CAS  Google Scholar 

  • Trzeciakiewicz A, Habauzit V, Mercier S, Lebecque P, Davicco MJ, Coxam V, Demigne C, Horcajada MN (2010) Hesperetin stimulates differentiation of primary rat osteoblasts involving the BMP signalling pathway. J Nutr Biochem 21(5):424–431

    Article  PubMed  CAS  Google Scholar 

  • Tseng PC, Hou SM, Chen RJ, Peng HW, Hsieh CF, Kuo ML, Yen ML (2011) Resveratrol promotes osteogenesis of human mesenchymal stem cells by upregulating RUNX2 gene expression via the SIRT1/FOXO3A axis. J Bone Miner Res 26:2552–2563

    Article  PubMed  CAS  Google Scholar 

  • Valcourt U, Gouttenoire J, Moustakas A, Herbage D, Mallein-Gerin F (2002) Functions of transforming growth factor-β family type I receptors and Smad proteins in the hypertrophic maturation and osteoblastic differentiation of chondrocytes. J Biol Chem 277(37):33545–33558

    Article  PubMed  CAS  Google Scholar 

  • Vimalraj S, Selvamurugan N (2012) MicroRNAs: synthesis, gene regulation and osteoblast differentiation. Curr Issues Mol Biol 15(1):7–18

    PubMed  Google Scholar 

  • Vimalraj S, Selvamurugan N (2014) MicroRNAs expression and their regulatory networks during mesenchymal stem cells differentiation toward osteoblasts. Int J Biol Macromol 66:194–202

    Article  PubMed  CAS  Google Scholar 

  • Vimalraj S, Selvamurugan N (2015) Regulation of proliferation and apoptosis in human osteoblastic cells by microRNA-15b. Int J Biol Macromol 79:490–497

    Article  PubMed  CAS  Google Scholar 

  • Vimalraj S, Partridge NC, Selvamurugan N (2014) A positive role of MicroRNA-15b on regulation of osteoblast differentiation. J Cell Physiol 229(9):1236–1244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vimalraj S, Arumugam B, Miranda PJ, Selvamurugan N (2015) Runx2: structure, function, and phosphorylation in osteoblast differentiation. Int J Biol Macromol 78:202–208

    Article  PubMed  CAS  Google Scholar 

  • Vimalraj S, Saravanan S, Vairamani M, Gopalakrishnan C, Sastry TP, Selvamurugan N (2016) A combinatorial effect of carboxymethyl cellulose based scaffold and microRNA-15b on osteoblast differentiation. Int J Biol Macromol 93:1457–1464

    Article  PubMed  CAS  Google Scholar 

  • Vishal M, Ajeetha R, Keerthana R, Selvamurugan N (2016) Regulation of Runx2 by histone deacetylases in bone. Curr Protein and Pept Sci 17(4):343–351

    Article  CAS  Google Scholar 

  • Vishal M, Swetha R, Thejaswini G, Arumugam B, Selvamurugan N (2017a) Role of Runx2 in breast cancer-mediated bone metastasis. Int J Biol Macromol 99:608–614

    Article  PubMed  CAS  Google Scholar 

  • Vishal M, Vimalraj S, Ajeetha R, Gokulnath M, Keerthana R, He Z, Partridge NC, Selvamurugan N (2017b) MicroRNA-590-5p stabilizes Runx2 by targeting Smad7 during osteoblast differentiation. J Cell Physiol 232(2):371–380

    Article  PubMed  CAS  Google Scholar 

  • Wang JY, Gao YB, Zhang N, Zou DW, Wang P, Zhu ZY, Li JY, Zhou SN, Wang SC, Wang YY, Yang JK (2014a) miR-21 overexpression enhances TGF-β1-induced epithelial-to-mesenchymal transition by target smad7 and aggravates renal damage in diabetic nephropathy. Mol Cell Endocrinol 392(1):163–172

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Qin G, Zhao TC (2014b) HDAC4: mechanism of regulation and biological functions. Epigenomics-UK 6(1):139–150

    Article  CAS  Google Scholar 

  • Wei J, Shi Y, Zheng L, Zhou B, Inose H, Wang J, Guo XE, Grosschedl R, Karsenty G (2012a) miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2. J Cell Biol 197(4):509–521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wei X, Chen D, Yi Y, Qi H, Gao X, Fang H, Gu Q, Wang L, Gu L (2012b) Syringic acid extracted from Herba dendrobii prevents diabetic cataract pathogenesis by inhibiting aldose reductase activity. Evid-Based Compl Alt 29:2012

    Google Scholar 

  • Wei B, Wei W, Zhao B, Guo X, Liu S (2017) Long non-coding RNA HOTAIR inhibits miR-17-5p to regulate osteogenic differentiation and proliferation in non-traumatic osteonecrosis of femoral head. PLoS One 12(2):e0169097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Westendorf JJ (2006) Transcriptional co-repressors of Runx2. J Cell Biochem 98(1):54–64

    Article  PubMed  CAS  Google Scholar 

  • Wissing MD (2015) Chemotherapy-and irradiation-induced bone loss in adults with solid tumors. Curr Osteoporos Rep 13:140–145

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu T, Shu T, Kang L, Wu J, Xing J, Lu Z, Chen S, Lv J (2017) Icaritin, a novel plant-derived osteoinductive agent, enhances the osteogenic differentiation of human bone marrow-and human adipose tissue-derived mesenchymal stem cells. Int J Mol Med 39(4):984–992

    Article  PubMed  CAS  Google Scholar 

  • Xiao HH, Gao QG, Zhang Y, Wong KC, Dai Y, Yao XS, Wong MS (2014) Vanillic acid exerts oestrogen-like activities in osteoblast-like UMR 106 cells through MAP kinase (MEK/ERK)-mediated ER signaling pathway. J Steroid Biochem 144:382–391

    Article  CAS  Google Scholar 

  • Xu D, Gao Y, Hu N, Wu L, Chen Q (2017) miR-365 ameliorates dexamethasone-induced suppression of osteogenesis in MC3T3-E1 cells by targeting HDAC4. Int J Mol Sci 18(5):977

    Article  PubMed Central  Google Scholar 

  • Yan X, Liu Z, Chen Y (2009) Regulation of TGF-β signaling by Smad7. Acta Biochim Biophys Sin 41(4):263–272

    Article  PubMed  CAS  Google Scholar 

  • Yan J, Guo D, Yang S, Sun H, Wu B, Zhou D (2016a) Inhibition of miR-222-3p activity promoted osteogenic differentiation of hBMSCs by regulating Smad5-RUNX2 signal axis. Biochem Biophys Res Commun 470(3):498–503

    Article  PubMed  CAS  Google Scholar 

  • Yan X, Liao H, Cheng M, Shi X, Lin X, Feng XH, Chen YG (2016b) Smad7 protein interacts with receptor-regulated smads (r-smads) to inhibit transforming growth factor-β (tgf-β)/smad signaling. J Biol Chem 291(1):382–392

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Wang Y, Xue J, Ma Q, Zhang J, Chen YF, Shang ZZ, Li QQ, Zhang SL, Zhao L (2016) Effect of Corilagin on the miR-21/smad7/ERK signaling pathway in a schistosomiasis-induced hepatic fibrosis mouse model. Parasitol Int 65(4):308–315

    Article  PubMed  CAS  Google Scholar 

  • Yano M, Inoue Y, Tobimatsu T, Hendy G, Canaff L, Sugimoto T, Seino S, Kaji H (2012) Smad7 inhibits differentiation and mineralization of mouse osteoblastic cells. Endocr J 59(8):653–662

    Article  PubMed  CAS  Google Scholar 

  • Yoshizuka M, Nakasa T, Kawanishi Y, Hachisuka S, Furuta T, Miyaki S, Adachi N, Ochi M (2016) Inhibition of microRNA-222 expression accelerates bone healing with enhancement of osteogenesis, chondrogenesis, and angiogenesis in a rat refractory fracture model. J Orthop Sci 21(6):852–858

    Article  PubMed  Google Scholar 

  • Zeng L, Wei J, Han D, Liu H, Liu Y, Zhao N, Sun S, Wang Y, Feng H (2017) Functional analysis of novel RUNX2 mutations in cleidocranial dysplasia. Mutagenesis https://doi.org/10.1093/mutage/gex012

  • Zhang C (2010) Transcriptional regulation of bone formation by the osteoblast-specific transcription factor Osx. J Orthop Surg Res 5:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang N, Ying MD, Wu YP, Zhou ZH, Ye ZM, Li H, Lin DS (2014) Hyperoside, a flavonoid compound, inhibits proliferation and stimulates osteogenic differentiation of human osteosarcoma cells. PLoS One 9:e98973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang X, Liu Y, Wang X, Sun X, Zhang C, Zheng S (2017) Analysis of novel RUNX2 mutations in Chinese patients with cleidocranial dysplasia. PLoS One 12(7):e0181653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao M, Qiao M, Harris SE, Oyajobi BO, Mundy GR, Chen D (2004) Smurf1 inhibits osteoblast differentiation and bone formation in vitro and in vivo. J Biol Chem (13):279, 12854–12279

  • Zhao Z, Zhao M, Xiao G, Franceschi RT (2005) Gene transfer of the Runx2 transcription factor enhances osteogenic activity of bone marrow stromal cells in vitro and in vivo. Mol Ther 12:247–253

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Qu X, Li H, Huang S, Wang S, Xu Q, Lin R, Han Q, Li J, Zhao RC (2012) MicroRNA-100 regulates osteogenic differentiation of human adipose-derived mesenchymal stem cells by targeting BMPR2. FEBS Lett 586(16):2375–2381

    Article  CAS  Google Scholar 

  • Zhou C, Lin Y (2014) Osteogenic differentiation of adipose-derived stem cells promoted by quercetin. Cell Prolif 47(2):124–132

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Wu Y, Jiang X, Zhang X, Xia L, Lin K, Xu Y (2015) The effect of quercetin on the osteogenesic differentiation and angiogenic factor expression of bone marrow-derived mesenchymal stem cells. PLoS One 10:e0129605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zuo B, Zhu J, Li J, Wang C, Zhao X, Cai G, Li Z, Peng J, Wang P, Shen C, Huang Y (2015) microRNA-103a functions as a mechanosensitive microRNA to inhibit bone formation through targeting Runx2. J Bone Miner Res 30(2):330–345

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Department of Biotechnology, India (Grant Nos. BT/PR7792/MED/30/950/2013 and BT/PR15014/BRB/10/1481/2016 to N. S). We thank Dr. N. Subbarayan for advice on statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Selvamurugan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arumugam, B., Balagangadharan, K. & Selvamurugan, N. Syringic acid, a phenolic acid, promotes osteoblast differentiation by stimulation of Runx2 expression and targeting of Smad7 by miR-21 in mouse mesenchymal stem cells. J. Cell Commun. Signal. 12, 561–573 (2018). https://doi.org/10.1007/s12079-018-0449-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-018-0449-3

Keywords

Navigation