Skip to main content

Advertisement

Log in

The portal hypertension syndrome: etiology, classification, relevance, and animal models

  • Special Issue - Portal Hypertension
  • Published:
Hepatology International Aims and scope Submit manuscript

Abstract

Background

Portal hypertension is a key complication of portal hypertension, which is responsible for the development of varices, ascites, bleeding, and hepatic encephalopathy, which, in turn, cause a high mortality and requirement for liver transplantation.

Aim

This review deals with the present day state-of-the-art preventative treatments of portal hypertension in cirrhosis according to disease stage. Two main disease stages are considered, compensated and decompensated cirrhosis, the first having good prognosis and being mostly asymptomatic, and the second being heralded by the appearance of bleeding or non-bleeding complications of portal hypertension.

Results

The aim of treatment in compensated cirrhosis is preventing clinical decompensation, the more frequent event being ascites, followed by variceal bleeding and hepatic encephalopathy. Complications are mainly driven by an increase of hepatic vein pressure gradient (HVPG) to values ≥10 mmHg (defining the presence of Clinically Significant Portal Hypertension, CSPH). Before CSPH, the treatment is limited to etiologic treatment of cirrhosis and healthy life style (abstain from alcohol, avoid/correct obesity…). When CSPH is present, association of a non-selective beta-blocker (NSBB), including carvedilol should be considered. NSBBs are mandatory if moderate/large varices are present. Patients should also enter a screening program for hepatocellular carcinoma. In decompensated patients, the goal is to prevent further bleeding if the only manifestation of decompensation was a bleeding episode, but to prevent liver transplantation and death in the common scenario where patients have manifested first non-bleeding complications. Treatment is based on the same principles (healthy life style..) associated with administration of NSBBs in combination if possible with endoscopic band ligation if there has been variceal bleeding, and complemented with simvastatin administration (20-40 mg per day in Child–Pugh A/B, 10–20 mg in Child C). Recurrence shall be treated with TIPS. TIPS might be indicated earlier in patients with: 1) Difficult/refractory ascites, who are not the best candidates for NSBBs, 2) patients having bleed under NSBBs or showing no HVPG response (decrease in HVPG of at least 20% of baseline or to values equal or below 12 mmHg). Decompensated patients shall all be considered as potential candidates for liver transplantation.

Conclusion

Treatment of portal hypertension has markedly improved in recent years. The present day therapy is based on accurate risk stratification according to disease stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Tsochatzis EA, Bosch J, Burroughs AK. Liver cirrhosis. Lancet 2014;383:1749–1761

    Article  PubMed  Google Scholar 

  2. Blachier M, Leleu H, Peck-Radosavljevic M, Valla DC, Roudot-Thoraval F. The burden of liver disease in Europe: a review of available epidemiological data. J Hepatol 2013;58:593–608

    Article  PubMed  Google Scholar 

  3. Garcia-Tsao G, Bosch J. Management of varices and variceal hemorrhage in cirrhosis. N Engl J Med 2010;362:823–832

    Article  CAS  PubMed  Google Scholar 

  4. Ripoll C, Groszmann R, Garcia-Tsao G, Grace N, Burroughs A, Planas R, et al. Hepatic venous pressure gradient predicts clinical decompensation in patients with compensated cirrhosis. Gastroenterology 2007;133:481–488

    Article  CAS  PubMed  Google Scholar 

  5. Bruix J, Castells A, Bosch J, Feu F, Fuster J, Garcia-Pagan JC, et al. Surgical resection of hepatocellular carcinoma in cirrhotic patients: prognostic value of preoperative portal pressure. Gastroenterology 1996;111:1018–1022

    Article  CAS  PubMed  Google Scholar 

  6. Berzigotti A, Reig M, Abraldes JG, Bosch J, Bruix J. Portal hypertension and the outcome of surgery for hepatocellular carcinoma in compensated cirrhosis: a systematic review and meta-analysis. Hepatology 2015;61:526–536

    Article  PubMed  Google Scholar 

  7. Ripoll C, Groszmann RJ, Garcia-Tsao G, Bosch J, Grace N, Burroughs A, et al. Hepatic venous pressure gradient predicts development of hepatocellular carcinoma independently of severity of cirrhosis. J Hepatol 2009;50:923–928

    Article  PubMed  PubMed Central  Google Scholar 

  8. Garcia-Tsao G, Abraldes JG, Berzigotti A, Bosch J. Portal hypertensive bleeding in cirrhosis: risk stratification, diagnosis, and management: 2016 practice guidance by the American Association for the Study of Liver Diseases. Hepatology 2017;65:310–335

    Article  PubMed  Google Scholar 

  9. Bosch J, Groszmann RJ, Shah VH. Evolution in the understanding of the pathophysiological basis of portal hypertension: how changes in paradigm are leading to successful new treatments. J Hepatol 2015;62:S121–S130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Luca A, Cirera I, Garcia-Pagan JC, Feu F, Pizcueta P, Bosch J, et al. Hemodynamic effects of acute changes in intra-abdominal pressure in patients with cirrhosis. Gastroenterology 1993;104:222–227

    Article  CAS  PubMed  Google Scholar 

  11. Berzigotti A, Ashkenazi E, Reverter E, Abraldes JG, Bosch J. Non-invasive diagnostic and prognostic evaluation of liver cirrhosis and portal hypertension. Dis Markers 2011;31:129–138

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bosch J, Abraldes JG, Berzigotti A, Garcia-Pagan JC. The clinical use of HVPG measurements in chronic liver disease. Nat Rev Gastroenterol Hepatol 2009;6:573–582

    Article  CAS  PubMed  Google Scholar 

  13. de Franchis R, Baveno VIF. Expanding consensus in portal hypertension: report of the Baveno VI consensus workshop: stratifying risk and individualizing care for portal hypertension. J Hepatol 2015;63:743–752

    Article  PubMed  Google Scholar 

  14. Berzigotti A, Bosch J, Boyer TD. Use of noninvasive markers of portal hypertension and timing of screening endoscopy for gastroesophageal varices in patients with chronic liver disease. Hepatology 2014;59:729–731

    Article  PubMed  Google Scholar 

  15. D’Amico G, Garcia-Tsao G, Pagliaro L. Natural history and prognostic indicators of survival in cirrhosis: a systematic review of 118 studies. J Hepatol 2006;44:217–231

    Article  PubMed  Google Scholar 

  16. D’Amico G, Pasta L, Morabito A, D’Amico M, Caltagirone M, Malizia G, et al. Competing risks and prognostic stages of cirrhosis: a 25-year inception cohort study of 494 patients. Aliment Pharmacol Ther 2014;39:1180–1193

    Article  PubMed  Google Scholar 

  17. Groszmann RJ, Garcia-Tsao G, Bosch J, Grace ND, Burroughs AK, Planas R, Escorsell A, et al. Beta-blockers to prevent gastroesophageal varices in patients with cirrhosis. N Engl J Med 2005;353:2254–2261

    Article  CAS  PubMed  Google Scholar 

  18. Berzigotti A, Garcia-Tsao G, Bosch J, Grace ND, Burroughs AK, Morillas R, et al. Obesity is an independent risk factor for clinical decompensation in patients with cirrhosis. Hepatology 2011;54:555–561

    Article  PubMed  PubMed Central  Google Scholar 

  19. Berzigotti A, Albillos A, Villanueva C, Genesca J, Ardevol A, Augustin S, et al. Effects of an intensive lifestyle intervention program on portal hypertension in patients with cirrhosis and obesity: the sportdiet study. Hepatology. 2017;65(4):1293–1305.

    Article  PubMed  Google Scholar 

  20. Carbonell N, Pauwels A, Serfaty L, Fourdan O, Levy VG, Poupon R. Improved survival after variceal bleeding in patients with cirrhosis over the past two decades. Hepatology 2004;40:652–659

    Article  PubMed  Google Scholar 

  21. D’Amico G, De Franchis R, Cooperative Study G. Upper digestive bleeding in cirrhosis. Post-therapeutic outcome and prognostic indicators. Hepatology 2003;38:599–612

    Article  PubMed  Google Scholar 

  22. Reverter E, Tandon P, Augustin S, Turon F, Casu S, Bastiampillai R, et al. A MELD-based model to determine risk of mortality among patients with acute variceal bleeding. Gastroenterology 2014;146(412–419):e413

    Google Scholar 

  23. Moitinho E, Escorsell A, Bandi JC, Salmeron JM, Garcia-Pagan JC, Rodes J, et al. Prognostic value of early measurements of portal pressure in acute variceal bleeding. Gastroenterology 1999;117:626–631

    Article  CAS  PubMed  Google Scholar 

  24. Abraldes JG, Villanueva C, Banares R, Aracil C, Catalina MV, Garci APJC, et al. Hepatic venous pressure gradient and prognosis in patients with acute variceal bleeding treated with pharmacologic and endoscopic therapy. J Hepatol 2008;48:229–236

    Article  PubMed  Google Scholar 

  25. Castaneda B, Morales J, Lionetti R, Moitinho E, Andreu V, Perez-Del-Pulgar S, et al. Effects of blood volume restitution following a portal hypertensive-related bleeding in anesthetized cirrhotic rats. Hepatology 2001;33:821–825

    Article  CAS  PubMed  Google Scholar 

  26. Sauerbruch T, Mengel M, Dollinger M, Zipprich A, Rossle M, Panther E, et al. Prevention of rebleeding from esophageal varices in patients with cirrhosis receiving small-diameter stents versus hemodynamically controlled medical therapy. Gastroenterology 2015;149(660–668):e661

    Google Scholar 

  27. de Souza AR, La Mura V, Reverter E, Seijo S, Berzigotti A, Ashkenazi E, et al. Patients whose first episode of bleeding occurs while taking a beta-blocker have high long-term risks of rebleeding and death. Clin Gastroenterol Hepatol 2012;10:670–676 (quiz e658)

    Article  PubMed  Google Scholar 

  28. Cahill PA, Foster C, Redmond EM, Gingalewski C, Wu Y, Sitzmann JV. Enhanced nitric oxide synthase activity in portal hypertensive rabbits. Hepatology 1995;22:598–606

    CAS  PubMed  Google Scholar 

  29. Rizvi MR, Tauseef M, Shahid M, Babbar R, Fahim M, Sakhuja P, et al. Nitric oxide and prostaglandin as mediators in the pathogenesis of hyperkinetic circulatory state in a model of endotoxemia-induced portal hypertension. Hepatol Int 2013;7:622–635

    Article  PubMed  Google Scholar 

  30. Rizvi MR, Omanwar S, Fahim M, Sarin SK. Altered alpha adrenergic vasoresponsiveness in a non-cirrhotic portal hypertension model of E. coli injection. J Gastroenterol Hepatol 2007;22:870–876

    Article  CAS  PubMed  Google Scholar 

  31. Kathayat R, Pandey GK, Malhotra V, Omanwar S, Sharma BK, Sarin SK. Rabbit model of non-cirrhotic portal fibrosis with repeated immunosensitization by rabbit splenic extract. J Gastroenterol Hepatol 2002;17:1312–1316

    Article  CAS  PubMed  Google Scholar 

  32. Omanwar S, Rizvi MR, Kathayat R, Sharma BK, Pandey GK, Alam MA, et al. A rabbit model of non-cirrhotic portal hypertension by repeated injections of E. coli through indwelling cannulation of the gastrosplenic vein. Hepatobiliary Pancreat Dis Int 2004;3:417–422

    PubMed  Google Scholar 

  33. Henriksen JH, Parving HH, Christiansen L, Winkler K, Lassen NA. Increased transvascular escape rate of albumin during experimental portal and hepatic venous hypertension in the pig. Relation to findings in patients with cirrhosis of the liver. Scand J Clin Lab Investig 1981;41:289–299

    Article  CAS  Google Scholar 

  34. Elmer O, Bengmark S, Goransson G, Sundqvist K, Soderstrom N. Acute portal hypertension after gastric administration of ethanol in the pig. Eur Surg Res 1982;14:298–308

    Article  CAS  PubMed  Google Scholar 

  35. Schenck E, Nelson JA, Starr FL, Coldwell D. Animal model of portal hypertension with observations regarding the relationship between portal flow and pressure. Investig Radiol 1993;28:442–445

    Article  CAS  Google Scholar 

  36. Habib N, Houssin D, Carol C, Cardoso J, Boisseau C, Calmus Y, et al. Experimental reduction of portal hypertension by mechanical increase of liver portal flow. Lancet 1991;337:16–17

    Article  CAS  PubMed  Google Scholar 

  37. Jensen LS, Krarup N, Juhl CO, Nielsen TH, Larsen JA. Endoscopic, portographic, and hemodynamic evaluation of prolonged propranolol administration in pigs with experimental portal hypertension and esophageal varices. Scand J Gastroenterol 1989;24:213–222

    Article  CAS  PubMed  Google Scholar 

  38. Rosch J, Uchida BT, Putnam JS, Buschman RW, Law RD, Hershey AL. Experimental intrahepatic portacaval anastomosis: use of expandable Gianturco stents. Radiology 1987;162:481–485

    Article  CAS  PubMed  Google Scholar 

  39. Pavcnik D, Saxon RR, Kubota Y, Tanihata H, Uchida BT, Corless C, et al. Attempted induction of chronic portal venous hypertension with polyvinyl alcohol particles in swine. J Vasc Interv Radiol 1997;8:123–128

    Article  CAS  PubMed  Google Scholar 

  40. Wang L, He FL, Liu FQ, Yue ZD, Zhao HW. Establishment of a hepatic cirrhosis and portal hypertension model by hepatic arterial perfusion with 80% alcohol. World J Gastroenterol 2015;21:9544–9553

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yin M, Kolipaka A, Woodrum DA, Glaser KJ, Romano AJ, Manduca A, et al. Hepatic and splenic stiffness augmentation assessed with MR elastography in an in vivo porcine portal hypertension model. J Magn Reson Imaging 2013;38:809–815

    Article  PubMed  PubMed Central  Google Scholar 

  42. Benninger E, Laschke MW, Cardell M, Holstein JH, Lustenberger T, Keel M, et al. Early detection of subclinical organ dysfunction by microdialysis of the rectus abdominis muscle in a porcine model of critical intra-abdominal hypertension. Shock 2012;38:420–428

    Article  CAS  PubMed  Google Scholar 

  43. Yagi S, Iida T, Hori T, Taniguchi K, Nagahama M, Isaji S, et al. Effect of portal haemodynamics on liver graft and intestinal mucosa after small-for-size liver transplantation in swine. Eur Surg Res 2012;48:163–170

    Article  CAS  PubMed  Google Scholar 

  44. He XJ, Yu MH, Li WC, Wang HQ, Li J, Peng XC, et al. Morphological and biomechanical remodelling of the hepatic artery in a swine model of portal hypertension. Hepatol Int 2012;6:631–638

    Article  PubMed  Google Scholar 

  45. Avritscher R, Wright KC, Javadi S, Uthamanthil R, Gupta S, Gagea M, et al. Development of a large animal model of cirrhosis and portal hypertension using hepatic transarterial embolization: a study in swine. J Vasc Interv Radiol 2011;22:1329–1334

    Article  PubMed  Google Scholar 

  46. Bosch J, Enriquez R, Groszmann RJ, Storer EH. Chronic bile duct ligation in the dog: hemodynamic characterization of a portal hypertensive model. Hepatology 1983;3:1002–1007

    Article  CAS  PubMed  Google Scholar 

  47. Abraldes JG, Pasarin M, Garcia-Pagan JC. Animal models of portal hypertension. World J Gastroenterol 2006;12:6577–6584

    Article  PubMed  PubMed Central  Google Scholar 

  48. Geerts AM, Vanheule E, Praet M, Van Vlierberghe H, De Vos M, Colle I. Comparison of three research models of portal hypertension in mice: macroscopic, histological and portal pressure evaluation. Int J Exp Pathol 2008;89:251–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yokoyama Y, Wawrzyniak A, Sarmadi AM, Baveja R, Gruber HE, Clemens MG, et al. Hepatic arterial flow becomes the primary supply of sinusoids following partial portal vein ligation in rats. J Gastroenterol Hepatol 2006;21:1567–1574

    Article  PubMed  Google Scholar 

  50. Iwakiri Y. Pathophysiology of portal hypertension. Clin Liver Dis 2014;18:281–291

    Article  PubMed  PubMed Central  Google Scholar 

  51. Iwakiri Y, Groszmann RJ. The hyperdynamic circulation of chronic liver diseases: from the patient to the molecule. Hepatology 2006;43:S121–S131

    Article  CAS  PubMed  Google Scholar 

  52. Huang HC, Haq O, Utsumi T, Sethasine S, Abraldes JG, Groszmann RJ, et al. Intestinal and plasma VEGF levels in cirrhosis: the role of portal pressure. J Cell Mol Med 2012;16:1125–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sarin SK, Kapoor D. Non-cirrhotic portal fibrosis: current concepts and management. J Gastroenterol Hepatol 2002;17:526–534

    Article  CAS  PubMed  Google Scholar 

  54. Klein S, Hinuber C, Hittatiya K, Schierwagen R, Uschner FE, Strassburg CP, et al. Novel rat model of repetitive portal venous embolization mimicking human non-cirrhotic idiopathic portal hypertension. PLoS ONE 2016;11:e0162144

    Article  PubMed  PubMed Central  Google Scholar 

  55. Simonetto DA, Yang HY, Yin M, de Assuncao TM, Kwon JH, Hilsher M, et al. Chronic passive venous congestion drives hepatic fibrogenesis via sinusoidal thrombosis and mechanical forces. Hepatology. 2015;61(2):648–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hidaka H, Iwakiri Y. Hepatic congestion leads to fibrosis: findings in a newly developed murine model. Hepatology 2015;61:428–430

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kwon S, Iwakiri Y, Cadelina G, Groszmann RJ. Neuronal nitric oxide synthase plays a role in the vasodilation observed in the splanchnic circulation in chronic portal hypertensive rats. Hepatology 2004;40:184A

    Article  Google Scholar 

  58. Tsai MH, Iwakiri Y, Cadelina G, Sessa WC, Groszmann RJ. Mesenteric vasoconstriction triggers nitric oxide overproduction in the superior mesenteric artery of portal hypertensive rats. Gastroenterology 2003;125:1452–1461

    Article  CAS  PubMed  Google Scholar 

  59. Abraldes JG, Iwakiri Y, Loureiro-Silva M, Haq O, Sessa WC, Groszmann RJ. Mild increases in portal pressure upregulate vascular endothelial growth factor and endothelial nitric oxide synthase in the intestinal microcirculatory bed, leading to a hyperdynamic state. Am J Physiol Gastrointest Liver Physiol 2006;290:G980–G987

    Article  CAS  PubMed  Google Scholar 

  60. Iwakiri Y, Tsai MH, McCabe TJ, Gratton JP, Fulton D, Groszmann RJ, et al. Phosphorylation of eNOS initiates excessive NO production in early phases of portal hypertension. Am J Physiol Heart Circ Physiol 2002;282:H2084–H2090

    Article  CAS  PubMed  Google Scholar 

  61. Iwakiri Y, Cadelina G, Sessa WC, Groszmann RJ. Mice with targeted deletion of eNOS develop hyperdynamic circulation associated with portal hypertension. Am J Physiol Gastrointest Liver Physiol 2002;283:G1074–G1081

    Article  CAS  PubMed  Google Scholar 

  62. Sikuler E, Kravetz D, Groszmann RJ. Evolution of portal hypertension and mechanisms involved in its maintenance in a rat model. Am J Physiol 1985;248:G618–G625

    CAS  PubMed  Google Scholar 

  63. Orloff MJ, Daily PO, Girard B. Treatment of Budd–Chiari syndrome due to inferior vena cava occlusion by combined portal and vena caval decompression. Am J Surg 1992;163:137–142 (discussion 142–143)

    Article  CAS  PubMed  Google Scholar 

  64. Simonetto DA, Yang HY, Yin M, de Assuncao TM, Kwon JH, Hilscher M, et al. Chronic passive venous congestion drives hepatic fibrogenesis via sinusoidal thrombosis and mechanical forces. Hepatology 2015;61:648–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Proctor E, Chatamra K. High yield micronodular cirrhosis in the rat. Gastroenterology 1982;83:1183–1190

    CAS  PubMed  Google Scholar 

  66. Kobayashi N, Ito M, Nakamura J, Cai J, Gao C, Hammel JM, et al. Hepatocyte transplantation in rats with decompensated cirrhosis. Hepatology 2000;31:851–857

    Article  CAS  PubMed  Google Scholar 

  67. Hernandez-Munoz R, Diaz-Munoz M, Suarez-Cuenca JA, Trejo-Solis C, Lopez V, Sanchez-Sevilla L, et al. Adenosine reverses a preestablished CCl4-induced micronodular cirrhosis through enhancing collagenolytic activity and stimulating hepatocyte cell proliferation in rats. Hepatology 2001;34:677–687

    Article  CAS  PubMed  Google Scholar 

  68. Constandinou C, Henderson N, Iredale JP. Modeling liver fibrosis in rodents. Methods Mol Med 2005;117:237–250

    PubMed  Google Scholar 

  69. Sieber CC, Lopez-Talavera JC, Groszmann RJ. Role of nitric oxide in the in vitro splanchnic vascular hyporeactivity in ascitic cirrhotic rats. Gastroenterology 1993;104:1750–1754

    Article  CAS  PubMed  Google Scholar 

  70. Graupera M, Garcia-Pagan JC, Titos E, Claria J, Massaguer A, Bosch J, et al. 5-Lipoxygenase inhibition reduces intrahepatic vascular resistance of cirrhotic rat livers: a possible role of cysteinyl-leukotrienes. Gastroenterology 2002;122:387–393

    Article  CAS  PubMed  Google Scholar 

  71. Loureiro-Silva MR, Cadelina GW, Groszmann RJ. Deficit in nitric oxide production in cirrhotic rat livers is located in the sinusoidal and postsinusoidal areas. Am J Physiol Gastrointest Liver Physiol 2003;284:G567–G574

    Article  CAS  PubMed  Google Scholar 

  72. Vorobioff J, Bredfeldt JE, Groszmann RJ. Increased blood flow through the portal system in cirrhotic rats. Gastroenterology 1984;87:1120–1126

    CAS  PubMed  Google Scholar 

  73. Castaneda B, Debernardi-Venon W, Bandi JC, Andreu V, Perez-del-Pulgar S, Moitinho E, et al. The role of portal pressure in the severity of bleeding in portal hypertensive rats. Hepatology 2000;31:581–586

    Article  CAS  PubMed  Google Scholar 

  74. Lee SS, Girod C, Braillon A, Hadengue A, Lebrec D. Hemodynamic characterization of chronic bile duct-ligated rats: effect of pentobarbital sodium. Am J Physiol 1986;251:G176–G180

    CAS  PubMed  Google Scholar 

  75. Heller J, Shiozawa T, Trebicka J, Hennenberg M, Schepke M, Neef M, et al. Acute haemodynamic effects of losartan in anaesthetized cirrhotic rats. Eur J Clin Investig 2003;33:1006–1012

    Article  CAS  Google Scholar 

  76. Sikuler E, Buchs AE, Yaari A, Keynan A. Hemodynamic characterization of conscious and ketamine-anesthetized bile duct-ligated rats. Am J Physiol 1991;260:G161–G166

    CAS  PubMed  Google Scholar 

  77. Li X, Benjamin IS, Alexander B. Reproducible production of thioacetamide-induced macronodular cirrhosis in the rat with no mortality. J Hepatol 2002;36:488–493

    Article  PubMed  Google Scholar 

  78. Luo B, Liu L, Tang L, Zhang J, Ling Y, Fallon MB. ET-1 and TNF-alpha in HPS: analysis in prehepatic portal hypertension and biliary and nonbiliary cirrhosis in rats. Am J Physiol Gastrointest Liver Physiol 2004;286:G294–G303

    Article  CAS  PubMed  Google Scholar 

  79. Popov Y, Patsenker E, Bauer M, Niedobitek E, Schulze-Krebs A, Schuppan D. Halofuginone induces matrix metalloproteinases in rat hepatic stellate cells via activation of p38 and NFκB. J Biol Chem 2006;281:15090–15098

    Article  CAS  PubMed  Google Scholar 

  80. Laleman W, Vander Elst I, Zeegers M, Servaes R, Libbrecht L, Roskams T, et al. A stable model of cirrhotic portal hypertension in the rat: thioacetamide revisited. Eur J Clin Investig 2006;36:242–249

    Article  CAS  Google Scholar 

  81. Sarin SK, Groszmann RJ, Mosca PG, Rojkind M, Stadecker MJ, Bhatnagar R, et al. Propranolol ameliorates the development of portal-systemic shunting in a chronic murine schistosomiasis model of portal hypertension. J Clin Investig 1991;87:1032–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sarin SK, Mosca P, Sabba C, Groszmann RJ. Hyperdynamic circulation in a chronic murine schistosomiasis model of portal hypertension. Hepatology 1991;13:581–584

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.B.: supported in part by grants from the Instituto de Salud Carlos III (PI 13/00341, and PI14/00182) in a program cofunded by FEDER, EU, and by EU (CLEVER- IAPP-GA-2013-612273). The CIBERehd is funded by the Instituto de Salud Carlos III. Y.I.: supported by NIH Grant R21AA023599 and Connecticut DPH Grant #2015-0901.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Bosch.

Ethics declarations

Funding

This work was supported in part by grants from the Instituto de Salud Carlos III (PI 13/00341, and PI14/00182) in a program cofunded by FEDER, EU, and by EU (CLEVER- IAPP-GA-2013-612273) (J.B.). The CIBERehd is funded by the Instituto de Salud Carlos III. Also, this work was supported by NIH Grant R21AA023599 and Connecticut DPH Grant #2015-0901 (Y.I.).

Conflict of interest

J.B. declares that he has no conflicts of interest with regards to the contents of this article. Y.I. declares that she has no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bosch, J., Iwakiri, Y. The portal hypertension syndrome: etiology, classification, relevance, and animal models. Hepatol Int 12 (Suppl 1), 1–10 (2018). https://doi.org/10.1007/s12072-017-9827-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12072-017-9827-9

Keyword

Navigation