Skip to main content
Log in

Scientific value of the quantum tests of equivalence principle in light of Hilbert’s sixth problem

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In his sixth problem, Hilbert called for an axiomatic approach to theoretical physics with an aim to achieve precision and rigour in scientific reasoning, where logic and language (semantics) of physics play pivotal roles. It is from such a point of view, that we investigate the scientific value of the modern experiments to perform quantum tests of equivalence principle. Determination of Planck constant involves the use of acceleration due to gravity of the Earth (g) that results in the force on a test mass. The equivalence between the inertial mass and gravitational mass of a test object is assumed in the process of logically defining g from the relevant hypotheses of physics. Consequently, if Planck constant is used as input in any experiment (or in the associated theory that finds such an experiment) that is designed to test the equivalence between inertial and gravitational mass, then it is equivalent to establish a scientific truth by implicitly assuming it, i.e. a tautology. There are several notable examples which plague the frontiers of current scientific research which claim to make quantum test of equivalence principle. We question the scientific value of such experiments from Hilbert’s axiomatic point of view. This work adds to the recently reported semantic obstacle in any axiomatic attempt to put ‘quantum’ and ‘gravity’ together, albeit with an experimental tint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D Hilbert, Bull. Am. Math. Soc. 8(10), 437 (1902)

    Article  Google Scholar 

  2. L Corry, David Hilbert and the axiomatization of physics (1898–1918) – From Grundlagen der Geometrie to Grundlagen der Physik (Springer, 2004)

  3. A N Gorban, Phil. Trans. R. Soc. A 376, 20170238 (2018), https://doi.org/10.1098/rsta.2017.0238

    Article  ADS  Google Scholar 

  4. A Majhi, A logico-linguistic inquiry into the foundations of physics: Part 1, Axiomathes (2021), https://doi.org/10.1007/s10516-021-09593-0

  5. A Majhi, Logic, philosophy and physics: A critical commentary on the dilemma of categories, Axiomathes (2021), https://doi.org/10.1007/s10516-021-09588-x

  6. N Gisin, Nature Phys. 16, 114 (2020), https://doi.org/10.1038/s41567-019-0748-5

  7. N Gisin, Synthese 199, 13345 (2021)

    Article  MathSciNet  Google Scholar 

  8. A Einstein, J. Franklin Inst. 221, 349 (1936)

    Article  ADS  Google Scholar 

  9. M Born, Physics in my generation (Springer, New York, 1968)

    Book  MATH  Google Scholar 

  10. A Majhi, Int. J. Theor. Phys. 61, 55 (2022)

    Article  MathSciNet  Google Scholar 

  11. A Majhi, Found. Sci. (2022), https://doi.org/10.1007/s10699-022-09875-9

  12. A Jaffe and E Witten, Quantum Yang–Mills theory, https://www.claymath.org/sites/default/files/yangmills.pdf

  13. A S Wightman, Am. Math. Soc. 28, 147 (1976)

    Google Scholar 

  14. N Bogolubov, A Logunov and I Todorov, Introduction to axiomatic quantum field theory, Mathematical Physics Monograph (WA Benjamin, 1975)

  15. A Schwarz, Mathematical foundations of quantum field theory (World Scientific, NY, 2020)

    Book  MATH  Google Scholar 

  16. Quantum Gravity – Stanford Encyclopedia of Philosophy, https://plato.stanford.edu/entries/quantum-gravity/

  17. G Rosi et al, Nat. Commun. 8, 15529 (2017)

    Article  ADS  Google Scholar 

  18. M Zych and C Brukner, Nat. Phys. 14, 1027 (2018)

    Article  Google Scholar 

  19. J Williams, S Chiow, N Yu and H Mueller, New J. Phys. 18, 025018 (2016), https://doi.org/10.1088/1367-2630/18/2/025018

    Article  ADS  Google Scholar 

  20. S Herrmann et al, Class. Quantum Grav. 29, 184003 (2012), 10.1088/0264-9381/29/18/184003

    Article  ADS  Google Scholar 

  21. P Asenbaum et al, Phys. Rev. Lett. 125, 191101 (2020)

    Article  ADS  Google Scholar 

  22. L Zhou et al, Phys. Rev. Lett. 115, 013004 (2015)

    Article  ADS  Google Scholar 

  23. H Bondi, Rev. Mod. Phys. 29, 423 (1957), 10.1103/RevModPhys.29.423

    Article  ADS  MathSciNet  Google Scholar 

  24. BIPM: The International System of Units (SI), Brochure, 9th Edn (2019)

  25. E Mach, The science of mechanics – A critical and historical account of its development, 4th Edn (Open Court Publishing Company, 1919)

  26. A Einstein, On the electrodynamics of moving bodies, page 140 of The Collected Papers of Albert Einstein, Vol. 2, The Swiss Years Writings, 1900–1909 (Princeton University Press, 1989)

  27. P W Bridgman, The logic of modern physics (Macmillan, 1960)

  28. W Quine, Two dogmas of empiricism, in: From a logical point of view: 9 logico-philosophical essays 3rd Edn (Harvard University Press, 1980)

  29. A Tarski, The concept of truth in formalized languages, in: Logics, semantics, metamathematics - Papers from 1923 to 1938, translated by J H Woodger, 2nd Edn (Hackett, 1983)

  30. A Tarski, Introduction to logic and to the methodology of the deductive sciences (Oxford University Press, 1994)

  31. J Hadamard, Lectures on Cauchy’s problem in linear partial differential equations (Yale University Press, New Haven, 1923)

    MATH  Google Scholar 

  32. I Newton, Principia, Volume I – The motion of bodies (University of California Press, 1966) [English translation by A Motte, edited by F Cajori]

  33. I Newton, Principia, Volume II – The system of the world (University of California Press, 1966) [English translation by A Motte, edited by F Cajori]

  34. A Einstein, Relativity: The special and the general theory (Forgotten Books, 2010)

  35. R v Eötvös, D Pekár and E Fekete, Ann. Phys. (Leipzig) 68, 11 (1922)

  36. C W Misner, K S Thorne and J A Wheeler, Gravitation (Freeman, 1973)

  37. C A Sanchez, B M Wood, R G Green, J O Liard and D Inglis, Metrologia 51, S5 (2014)

  38. D Haddad, F Seifert, L S Chao, A Possolo, D B Newell, J R Pratt, C J Williams and S Schlamminger, Metrologia 54, 633 (2017), https://doi.org/10.1088/1681-7575/aa7bf2

    Article  ADS  Google Scholar 

  39. B Kibble, A suggestion for a different way of realizing the ampere atomic masses and fundamental constants edited by J H Sanders and A H Wapstra (Plenum, New York, 1976) Vol. 5, pp. 549–51

  40. R Millikan, Phys. Rev. 7, 355 (1916), https://doi.org/10.1103/PhysRev.7.355

    Article  ADS  Google Scholar 

  41. J Huang et al, Rev. Sci. Instrum. 91, 045116 (2020), https://doi.org/10.1063/1.5129140

    Article  ADS  Google Scholar 

  42. R Steiner, Rep. Prog. Phys. 76, 016101 (2013), https://doi.org/10.1088/0034-4885/76/1/016101

    Article  ADS  Google Scholar 

  43. Z Li et al, The improvement of Joule balance NIM-1 and the design of new Joule balance NIM-2, 1412.6895.pdf

  44. Z Li et al, IEEE Trans. Instrum. Meas. 68, 2208 (2019)

    Article  ADS  Google Scholar 

  45. A Einstein, Ann. Phys. 17, 132 (1905), English translation by D ter Haar, The old quantum theory (Pergamon Press, 1967), http://users.physik.fu-berlin.de/~kleinert/files/eins_lq.pdf

  46. B Jeckelmann and F Piquemal, Ann. Phys. (Berlin) 531, 1800389 (2018), https://doi.org/10.1002/andp.201800389

  47. E R Williams, R N Ghosh and J M Martinis, J. Res. Natl. Inst. Stand. Technol. 97, 299 (1992)

    Article  Google Scholar 

  48. T A Fulton and G J Dolan, Phys. Rev. Lett. 59, 109 (1987), https://doi.org/10.1103/PhysRevLett.59.109

    Article  ADS  Google Scholar 

  49. D V Averin and K K Likharev, J. Low Temp. Phys. 62, 345 (1986), https://doi.org/10.1007/BF00683469

    Article  ADS  Google Scholar 

  50. R Millikan, Phys. Rev. Ser. I 32, 349 (1911), https://doi.org/10.1103/PhysRevSeriesI.32.349

    Article  ADS  Google Scholar 

  51. R Millikan, Phys. Rev. 2, 109 (1913), https://doi.org/10.1103/PhysRev.2.109

    Article  ADS  Google Scholar 

  52. H Fletcher, Phys. Today 35, 643 (1982), https://doi.org/10.1063/1.2915126

    Article  Google Scholar 

  53. H R Robinson, Rep. Progr. Phys. 2, 247 (1935), https://doi.org/10.1088/0034-4885/2/1/312

    Article  ADS  Google Scholar 

  54. H R Robinson, Rep. Progr. Phys. 4, 212 (1937), https://doi.org/10.1088/0034-4885/4/1/312

    Article  ADS  Google Scholar 

  55. J Perrin, Ann. de Chim. et de Phys. 18, 1 (1909)

    Google Scholar 

  56. R D Deslattes, A Henins, H A Bowman, R M Schoonover, C L Carroll, I L Barnes, L A Machlan, L J Moore and W R Shields, Phys. Rev. Lett. 33, 463 (1974), https://doi.org/10.1103/PhysRevLett.33.463

    Article  ADS  Google Scholar 

  57. R D Deslattes, A Henins, R M Schoonover, C L Carroll and H A Bowman, Phys. Rev. Lett. 36, 898 (1976)

    Article  ADS  Google Scholar 

  58. P O Pontius, Mass and mass values, U.S. National Bureau of Standards Monograph No. 133 (U.S. GPO, Washington, D.C., 1974), https://nvlpubs.nist.gov/nistpubs/Legacy/MONO/nbsmonograph133.pdf

  59. A Picard and H Fang, Metrologia 41, 330 (2004)

    Article  ADS  Google Scholar 

  60. K Fujii, A Waseda and N Kuramoto, Meas. Sci. Technol. 12, 2031 (2001)

    Article  ADS  Google Scholar 

  61. K Fujii, Metrologia 41, S1 (2004)

    Article  ADS  Google Scholar 

  62. K Fujii, Meas. Sci. Technol. 17, 2551 (2006)

    Article  ADS  Google Scholar 

  63. A Waseda and K Fujii, Meas. Sci. Technol. 12, 2039 (2001)

    Article  ADS  Google Scholar 

  64. A Waseda and K Fujii, Metrologia 41, S62 (2004)

    Article  ADS  Google Scholar 

  65. On floating bodies, The works of Archimedes edited in Modern Notation with Introductory Chapters, edited by T L Heath (Cambridge University Press, 2009), p. 253

  66. T J Quinn, C C Speake and R S Davis, Metrologia 23, 87 (1986/87), https://iopscience.iop.org/article/10.1088/0026-1394/23/2/002

  67. T J Quinn, Meas. Sci. Technol. 3, 141 (1992)

    Article  ADS  Google Scholar 

  68. A Picard, Metrologia 41, 319 (2004)

    Article  ADS  Google Scholar 

  69. N Kuramoto, S Mizushima, L Zhang, K Fujita, Y Azuma, A Kurokawa, S Okubo, H Inaba and K Fujii, Metrologia 54, 716 (2017)

    Article  ADS  Google Scholar 

  70. P Becker, H Friedrich, K Fujii, W Giardini, G Mana, A Picard, H-J Pohl, H Riemann and S Valkiers, Meas. Sci. Technol. 20, 5092002 (2009

    Article  ADS  Google Scholar 

  71. A Picard, Meas. Sci. Technol. 17, 2540 (2006)

    Article  ADS  Google Scholar 

  72. A Picard, P Barat, M Borys, M Firlus and S Mizushima, Metrologia 48, S112 (2011)

    Article  ADS  Google Scholar 

  73. J O Liard, C A Sanchez, B M Wood, A D Inglis and R J Silliker, Metrologia 51, S32 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank R Radhakrishnan for pointing out ref. [31]. The work was accomplished while GS was visiting The Indian Statistical Institute, Kolkata. AM is supported by the Department of Science and Technology of India through the INSPIRE Faculty Fellowship, Grant No. IFA18- PH208.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Majhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majhi, A., Sardar, G. Scientific value of the quantum tests of equivalence principle in light of Hilbert’s sixth problem. Pramana - J Phys 97, 26 (2023). https://doi.org/10.1007/s12043-022-02504-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02504-x

Keywords

PACS

Navigation