Skip to main content
Log in

The first genetic map of pigeon pea based on diversity arrays technology (DArT) markers

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

With an objective to develop a genetic map in pigeon pea (Cajanus spp.), a total of 554 diversity arrays technology (DArT) markers showed polymorphism in a pigeon pea F2 mapping population of 72 progenies derived from an interspecific cross of ICP 28 (Cajanus cajan) and ICPW 94 (Cajanus scarabaeoides). Approximately 13% of markers did not conform to expected segregation ratio. The total number of DArT marker loci segregating in Mendelian manner was 405 with 73.1% (P > 0.001) of DArT markers having unique segregation patterns. Two groups of genetic maps were generated using DArT markers. While the maternal genetic linkage map had 122 unique DArT maternal marker loci, the paternal genetic linkage map has a total of 172 unique DArT paternal marker loci. The length of these two maps covered 270.0 cM and 451.6 cM, respectively. These are the first genetic linkage maps developed for pigeon pea, and this is the first report of genetic mapping in any grain legume using diversity arrays technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akbari M., Wenzl P., Caig V., Carling J., Xia L., Yang S. et al. 2006 Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor. Appl. Genet. 113, 1409–1420.

    Article  PubMed  CAS  Google Scholar 

  • Anderson J. A., Churchill G. A., Sutrique J. E., Tanksley S. D. and Sorrells M. E. 1993 Optimizing parental selection for genetic linkage maps. Genome 36, 181–186.

    Article  PubMed  CAS  Google Scholar 

  • Barcaccia G., Meneghetti S., Albertini E., Triest L. and Lucchin M. 2003 Linkage mapping in tetraploid willows: segregation of molecular markers and estimation of linkage phases support an allotetraploid structure for Salix alba × Salix fragilis interspecific hybrids. Heredity 90, 169–180.

    Google Scholar 

  • Blanco A., Bellomo M. P., Cenci A., De Giovanni C., D’Ovidio R., Iacono E. et al. 1998 A genetic linkage map of durum wheat. Theor. Appl. Genet. 97, 721–728.

    Article  CAS  Google Scholar 

  • Burns M. J., Edwards K. J., Newbury H. J., Ford-Lloyd B. V. and Baggott C. D. 2001 Development of simple sequence repeat (SSR) markers for the assessment of gene flow and genetic diversity in pigeonpea (Cajanus cajan). Mol. Ecol. Notes 1, 283–285.

    Article  CAS  Google Scholar 

  • Cuc L. M., Mace E. S., Crouch J. H., Quang V. D., Long T. D. and Varshney R. K. 2008 Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea). BMC Plant Biol. 8, 55.

    Article  PubMed  Google Scholar 

  • Diatchenko L., Lau Y. F. C., Campbell A. P., Chenchik A., Moqadam F., Huang B. et al. 1996 Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA 93, 6025–6030.

    Article  PubMed  CAS  Google Scholar 

  • Jaccoud D., Peng K., Feinstein D. and Kilian A. 2001 Diversity Arrays: a solid state technology for sequence information independent genotyping. Nucleic Acid. Res. 29, e25.

    Article  Google Scholar 

  • Kilian A., Huttner E., Wenzl P., Jaccoud D., Carling J., Caig V. et al. 2005 The fast and the cheap: SNP and DArT-based whole genome profiling for crop improvement. In Proceedings of the International Congress ‘In the wake of the double helix: from the green revolution to the gene revolution’ (ed. R. Tuberosa, R. L. Phillips and M. Gale), pp 443–461. Avenue media, Bologna, Italy.

  • Lander E. S., Green P., Abrahamson J., Barlow A. and Daly M. J. 1987 MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174–181.

    Article  PubMed  CAS  Google Scholar 

  • Lezar S., Myburg A. A., Berger D. K., Wingfield M. J. and Wingfield B. D. 2004 Development and assessment of microarray-based DNA fingerprinting in Eucalyptus grandis. Theor. Appl. Genet. 109, 1329–1336.

    Article  PubMed  CAS  Google Scholar 

  • Liang N., Bao Z., Temnykh S., Cheng Z., Jiang J., Wing R. A. et al. 2002 Dasheng: a recently amplified nonautonomous long terminal repeat element that is a major component of pericentromeric regions in rice. Genetics 161, 1293–1305.

    Google Scholar 

  • Livingstone K. D., Lackney V. K., Blauth J. R., Van Wijk R. and Jahn M. K. 1999 Genome mapping in Capsicum and evolution of genome structure in Solanaceae. Genetics 152, 1183–1202.

    PubMed  CAS  Google Scholar 

  • Lu H., Romero-Severson J. and Bernardo R. 2002 Chromosomal regions associated with segregation distortion in maize. Theor. Appl. Genet. 105, 622–628.

    Article  PubMed  CAS  Google Scholar 

  • Mignouna H. D., Mank R. A., Ellis T. H. N., van den Bosch N., Asiedu R., Ng S. Y. C. and Peleman J. 2002 A genetic linkage map of guinea yam (Dioscorea rotundata Poir.) based on AFLP markers. Theor. Appl. Genet. 105, 716–725.

    Article  PubMed  CAS  Google Scholar 

  • Moore G. 2000 Cereal chromosome structure, evolution, and pairing. Annu. Rev. Plant Physiol. Plant. Mol. Biol. 51, 195–222.

    Article  PubMed  CAS  Google Scholar 

  • Renganayaki K., Jessup R. W., Burson B. L., Hussey M. A. and Read J. C. 2005 Identification of male-specific AFLP markers in dioecious texas bluegrass. Crop. Sci. 45, 2529–2539.

    Article  CAS  Google Scholar 

  • Saal B. and Wricke G. 2008 Clustering of amplified fragment length polymorphism markers in a linkage map of rye. Plant Breed. 121, 117–123.

    Article  Google Scholar 

  • Sandal N., Krusell L., Radutoiu S., Olbryt M., Pedrosa A., Stracke S. et al. 2002 A genetic linkage map of the model legume Lotus japonicus and strategies for fast mapping of new loci. Genetics 161, 1673–1683.

    PubMed  CAS  Google Scholar 

  • Tanksley S. D., Ganal M. W., Prince J. P. and de Vicente M. C. 1992 High density molecular linkage maps of the tomato and potato genomes: biological inferences and practical applications. Genetics 132, 1141–1160.

    PubMed  CAS  Google Scholar 

  • Varshney R. K., Hoisington D. A. and Tyagi A. K. 2006 Advances in cereal genomics and applications in crop breeding. Trends Biotechnol. l 24, 490–499.

    Article  Google Scholar 

  • Varshney R. K., Close T. J., Singh N. K., Hoisington D. A. and Cook D. R. 2009 Orphan legume crops enter the genomics era! Curr. Opin. Plant Biol. 12, 202–210.

    Article  PubMed  Google Scholar 

  • Varshney R. K., Penmetsa R. V., Dutta S., Kulwal P. L., Saxena R. K., Datta S. et al. 2010 Pigeonpea genomics initiative (PGI): an international effort to improve crop productivity of pigeonpea (Cajanus cajan L.). Mol. Breed. 26, 393–408.

    Article  PubMed  Google Scholar 

  • Wang S., Basten C. J. and Zeng Z. B. 2007 Windows QTL cartographer 2.5. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm.

  • Wenzl P., Carling J., Kudrna D., Jaccoud D., Huttner E., Kleinhofs A. and Kilian A. 2004 Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc. Natl. Acad. Sci. USA 101, 9915–9920.

    Article  PubMed  CAS  Google Scholar 

  • Wittenberg A. H., Van der Lee T., Cayla C., Kilian A., Visser R. G. and Schouten H. J. 2005 Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana. Mol. Genet. Genomics 274, 30–39.

    Article  PubMed  CAS  Google Scholar 

  • Xia L., Peng K., Yang S., Wenzl P., Carmen de Vicente M., Fregene M. and Kilian A. 2005 DArT for high-throughput genotyping of cassava (Manihot esculenta) and its wild relatives. Theor. Appl. Genet. 110, 1092–1098.

    Article  PubMed  CAS  Google Scholar 

  • Yang S., Pang W., Ash G., Harper J., Carling J., Wenzl P. et al. 2006 Low level of genetic diversity in cultivated pigeonpea compared to its wild relatives is revealed by diversity arrays technology. Theor. Appl. Genet. 113, 585–595.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RAJEEV K. VARSHNEY.

Additional information

[Yang S. Y., Saxena R. K., Kulwal P. L., Ash G. J., Dubey A., Harper J. D. I., Upadhyaya H. D., Gothalwal R., Kilian A. and Varshney R. K. 2011 The first genetic map of pigeon pea based on diversity arrays technology (DArT) markers. J. Genet. 90, 103–109]

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 681 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

YANG, S.Y., SAXENA, R.K., KULWAL, P.L. et al. The first genetic map of pigeon pea based on diversity arrays technology (DArT) markers. J Genet 90, 103–109 (2011). https://doi.org/10.1007/s12041-011-0050-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-011-0050-5

Keywords

Navigation