Skip to main content

Advertisement

Log in

Comprehensive molecular insights into the stress response dynamics of rice (Oryza sativa L.) during rice tungro disease by RNA-seq-based comparative whole transcriptome analysis

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Rice tungro is a serious viral disease of rice resulting from infection by two viruses, Rice tungro bacilliform virus and Rice tungro spherical virus. To gain molecular insights into the global gene expression changes in rice during tungro, a comparative whole genome transcriptome study was performed on healthy and tungro-affected rice plants using Illumina Hiseq 2500. About 10 GB of sequenced data comprising about 50 million paired end reads per sample were then aligned on to the rice genome. Gene expression analysis revealed around 959 transcripts, related to various cellular pathways concerning stress response and hormonal homeostasis to be differentially expressed. The data was validated through qRT-PCR. Gene ontology and pathway analyses revealed enrichment of transcripts and processes similar to the differentially expressed genes categories. In short, the present study is a comprehensive coverage of the differential gene expression landscape and provides molecular insights into the infection dynamics of the rice-tungro virus system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K and Yamaguchi-Shinozaki K 2003 Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15 63–78

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alazem M and Lin N-S 2015 Roles of plant hormones in the regulation of host–virus interactions. Mol. Plant Pathol. 16 529–540

    CAS  PubMed  Google Scholar 

  • Alcaide-Loridan C and Jupin I 2012 Ubiquitin and plant viruses, let’s play together! Plant Physiol. 160 72–82

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amari K, Díaz-Vivancos P, Pallás V, Sánchez-Pina MA and Hernández JA 2007 Oxidative stress induction by Prunus necrotic ringspot virus infection in apricot seeds. Physiol. Plant. 131 302–310

    CAS  PubMed  Google Scholar 

  • Ascencio-Ibánez JT, Sozzani R, Lee T-J, Chu T-M, Wolfinger RD, Cella R and Hanley-Bowdoin L 2008. Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol. 148 436–454

    PubMed  PubMed Central  Google Scholar 

  • Baker CJ and Orlandi EW 1995 Active Oxygen in Plant Pathogenesis. Annu. Rev. Phytopathol. 33 299–321

    CAS  PubMed  Google Scholar 

  • Bao D, Ganbaatar O, Cui X, Yu R, Bao W, Falk BW and Wuriyanghan H 2018. Down-regulation of genes coding for core RNAi components and disease resistance proteins via corresponding microRNAs might be correlated with successful Soybean mosaic virus infection in soybean. Mol. Plant Pathol. 19 948–960

    CAS  PubMed  Google Scholar 

  • Bari R and Jones JDG 2009 Role of plant hormones in plant defence responses. Plant Mol. Biol. 69 473–488

    CAS  PubMed  Google Scholar 

  • Becker F, Buschfeld E, Schell J and Bachmair A 1993 Altered response to viral infection by tobacco plants perturbed in ubiquitin system. Plant J. 3 875–881

    Google Scholar 

  • Belkhadir Y, Subramaniam R and Dangl JL 2004 Plant disease resistance protein signaling: NBS–LRR proteins and their partners. Curr. Opin. Plant Biol. 7 391–399

    CAS  PubMed  Google Scholar 

  • Benjamins R and Scheres B 2008 Auxin: The looping star in plant development. Annu. Rev. Plant Biol. 59 443–465

    CAS  PubMed  Google Scholar 

  • Bennett RN and Wallsgrove RM 1994 Secondary metabolites in plant defence mechanisms. New Phytol. 127 617–633

    CAS  Google Scholar 

  • Bevitori R, Oliveira MB, Grossi-de-Sá MF, Lanna AC, da Silveira RD and Petrofeza S 2014 Selection of optimized candidate reference genes for qRT-PCR normalization in rice (Oryza sativa L.) during Magnaporthe oryzae infection and drought. Genet. Mol. Res. 13 9795–9805

    CAS  PubMed  Google Scholar 

  • Boutant E, Fitterer C, Ritzenthaler C and Heinlein M 2009 Interaction of the Tobacco mosaic virus movement protein with microtubules during the cell cycle in tobacco BY-2 cells. Protoplasma 237 3

    CAS  PubMed  Google Scholar 

  • Budot BO, Encabo JR, Ambita ID V, Atienza-Grande GA, Satoh K, Kondoh H, Ulat VJ, Mauleon R, Kikuchi S and Choi I-R 2014 Suppression of cell wall-related genes associated with stunting of Oryza glaberrima infected with Rice tungro spherical virus. Front Microbiol. 5 26

    PubMed  PubMed Central  Google Scholar 

  • Bunawan H, Dusik L, Bunawan SN and Amin NM 2014 Rice tungro disease: From identification to disease control. World Appl. Sci. J. 31 1221–1226

    Google Scholar 

  • Cabauatan PQ and Hibino H 1985 Transmission of rice tungro bacilliform and spherical viruses by Nephotettix virescens Distant. Philipp. Phytopathol. 21 103–109

    Google Scholar 

  • Camejo D, Guzmán-Cedeño Á and Moreno A 2016 Reactive oxygen species, essential molecules, during plant-pathogen interactions. Plant Physiol. Biochem. 103 10–23

    CAS  PubMed  Google Scholar 

  • Carrington JC, Kasschau KD, Mahajan SK and Schaad MC 1996 Cell-to-cell and long-distance transport of viruses in plants. Plant Cell 8 1669

    CAS  PubMed  PubMed Central  Google Scholar 

  • Catoni M, Miozzi L, Fiorilli V, Lanfranco L and Accotto GP 2009 Comparative analysis of expression profiles in shoots and roots of tomato systemically infected by Tomato spotted wilt virus reveals organ-specific transcriptional responses. Mol. Plant Microbe Interact. 22 1504–1513

    CAS  PubMed  Google Scholar 

  • Chen Z, Zhou T, Wu X, Hong Y, Fan Z and Li H 2008 Influence of cytoplasmic heat shock protein 70 on viral infection of Nicotiana benthamiana Mol. Plant Pathol. 9 809–817

    CAS  Google Scholar 

  • Chowdhury AK and Mukhopadhyay S 1974 Effect of rice tungro virus (RTV) infection on starch, reducing sugar and phosphorus contents of leaves of different varieties of rice. Curr. Sci. 43 281–283

    Google Scholar 

  • Clarke SF, Guy PL, Burritt DJ and Jameson PE 2002 Changes in the activities of antioxidant enzymes in response to virus infection and hormone treatment. Physiol. Plant. 114 157–164

    CAS  PubMed  Google Scholar 

  • Coego A, Ramirez V, Gil MJ, Flors V, Mauch-Mani B and Vera P 2005 An Arabidopsis homeodomain transcription factor, OVEREXPRESSOR OF CATIONIC PEROXIDASE 3, mediates resistance to infection by necrotrophic pathogens. Plant Cell. 17 2123–2137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Correa RL, Bruckner FP, Cascardo R de S and Alfenas-Zerbini P 2013. The role of F-box proteins during viral infection. Int. J. Mol. Sci. 14 4030–4049

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding X, Cao Y, Huang L, Zhao J, Xu C, Li X and Wang S 2008 Activation of the indole-3-acetic acid–amido synthetase GH3-8 suppresses expansin expression and promotes salicylate-and jasmonate-independent basal immunity in rice. Plant Cell 20 228–240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dhondt S, Geoffroy P, Stelmach BA, Legrand M and Heitz T 2000 Soluble phospholipase A2 activity is induced before oxylipin accumulation in tobacco mosaic virus-infected tobacco leaves and is contributed by patatin-like enzymes. Plant J. 23 431–440

    CAS  PubMed  Google Scholar 

  • Doke N and Ohashi Y 1988 Involvement of an O2− generating system in the induction of necrotic lesions on tobacco leaves infected with tobacco mosaic virus. Physiol. Mol. Plant Pathol. 32 163–175

    CAS  Google Scholar 

  • Dreher K and Callis J 2007 Ubiquitin, hormones and biotic stress in plants. Ann. Bot. 99 787–822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C and Lepiniec L 2010 MYB transcription factors in Arabidopsis. Trends Plant Sci. 15 573–581

    CAS  PubMed  Google Scholar 

  • Encabo JR, Cabauatan PQ, Cabunagan RC, Satoh K, Lee J-H, Kwak D-Y, De Leon TB, Macalalad RJA, Kondoh H, Kikuchi S, et al. 2009 Suppression of two tungro viruses in rice by separable traits originating from cultivar Utri Merah. Mol. Plant Microbe Interact. 22 1268–1281

    CAS  PubMed  Google Scholar 

  • Eulgem T and Somssich IE 2007 Networks of WRKY transcription factors in defense signaling. Curr. Opin. Plant Biol. 10 366–371

    CAS  PubMed  Google Scholar 

  • García-Marcos A, Pacheco R, Martiáñez J, González-Jara P, Díaz-Ruíz JR and Tenllado F 2009 Transcriptional changes and oxidative stress associated with the synergistic interaction between Potato virus X and Potato virus Y and their relationship with symptom expression. Mol. Plant Microbe Interact. 22 1431–1444

    PubMed  Google Scholar 

  • Gorovits R and Czosnek H 2017 The involvement of heat shock proteins in the establishment of Tomato yellow leaf curl virus infection. Front. Plant Sci. 8 355

    PubMed  PubMed Central  Google Scholar 

  • Gorovits R, Moshe A, Ghanim M and Czosnek H 2013 Recruitment of the host plant heat shock protein 70 by Tomato yellow leaf curl virus coat protein is required for virus infection. PLoS One 8 e70280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón M, Dopazo J and Conesa A 2008 High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 36 3420–3435

    PubMed  PubMed Central  Google Scholar 

  • Guo D-P, Guo Y-P, Zhao J-P, Liu H, Peng Y, Wang Q-M, Chen J-S and Rao G-Z 2005 Photosynthetic rate and chlorophyll fluorescence in leaves of stem mustard (Brassica juncea var. tsatsai) after turnip mosaic virus infection. Plant Sci. 168 57–63

    CAS  Google Scholar 

  • Gupta S, Chakraborti D, Basu D and Das S 2010 In search of decoy/guardee to R genes: deciphering the role of sugars in defense against Fusarium wilt in chickpea. Plant Signal Behav. 5 1081–1087

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harberd NP, Belfield E and Yasumura Y 2009 The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: how an “inhibitor of an inhibitor” enables flexible response to fluctuating environments. Plant Cell 21 1328–1339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hay JM, Jones MC, Blakebrough ML, Dasgupta I, Davies JW and Hull R 1991 An analysis of the sequence of an infectious clone of rice tungro bacilliform virus, a plant pararetrovirus. Nucleic Acids Res. 19 2615–2621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández JA, Gullner G, Clemente-Moreno MJ, Künstler A, Juhász C, Díaz-Vivancos P and Király L 2016 Oxidative stress and antioxidative responses in plant–virus interactions. Physiol. Mol. Plant Pathol. 94 134–148

    Google Scholar 

  • Hibino H, Roechan M and Sudarisman S 1978 Association of two types of virus particles with penyakit habang (tungro disease) of rice in Indonesia. Phytopathology 68 1412–1416

    Google Scholar 

  • Hibino H, Saleh N and Roechan M 1979 Transmission of two kinds of RTD viruses. Phytopathology 69 1266–1268

    Google Scholar 

  • Hofius D, Maier AT, Dietrich C, Jungkunz I, Börnke F, Maiss E and Sonnewald U 2007 Capsid protein-mediated recruitment of host DnaJ-like proteins is required for Potato virus Y infection in tobacco plants. J. Virol. 81 11870–11880

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hyodo K, Hashimoto K, Kuchitsu K, Suzuki N and Okuno T 2017 Harnessing host ROS-generating machinery for the robust genome replication of a plant RNA virus. Proc. Natl. Acad. Sci. 114 1282–1290

    Google Scholar 

  • Isaacson MK and Ploegh HL 2009 Ubiquitination, ubiquitin-like modifiers, and deubiquitination in viral infection. Cell Host Microbe 5 559–570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh H, Ueguchi-Tanaka M and Matsuoka M 2008 Molecular biology of gibberellins signaling in higher plants. Int. Rev. Cell Mol. Biol. 268 191–221

    CAS  PubMed  Google Scholar 

  • Jain M, Nijhawan A, Tyagi AK and Khurana JP 2006 Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem. Biophys. Res. Commun. 345 646–651

    CAS  PubMed  Google Scholar 

  • Jain M, Tyagi AK and Khurana JP 2008 Genome-wide identification, classification, evolutionary expansion and expression analyses of homeobox genes in rice. FEBS J. 275 2845–2861

    CAS  PubMed  Google Scholar 

  • Jaiswal P, Ni J, Yap I, Ware D, Spooner W, Youens-Clark K, Ren L, Liang C, Zhao W, Ratnapu K et al. 2006 Gramene: a bird’s eye view of cereal genomes. Nucleic Acids Res. 34 D717–D723

    CAS  PubMed  Google Scholar 

  • Jia Q, Liu N, Xie K, Dai Y, Han S, Zhao X, Qian L, Wang Y, Zhao J and Gorovits R 2016 CLCuMuB βC1 subverts Ubiquitination by interacting with NbSKP1s to enhance geminivirus infection in Nicotiana benthamiana. PLoS Pathog. 12 e1005668

    PubMed  PubMed Central  Google Scholar 

  • Jones MC, Gough K, Dasgupta I, Subba Rao BL, Cliffe J, Qu R, Shen P, Kaniewska M, Blakebrough M, Davies JW et al. 1991 Rice tungro disease is caused by an RNA and a DNA virus. J. Gen. Virol. 72 757–761

    CAS  PubMed  Google Scholar 

  • Kachroo A and Kachroo P 2009 Fatty acid–derived signals in plant defense. Annu. Rev. Phytopathol. 47 153–176

    CAS  PubMed  Google Scholar 

  • Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu J, Zhou S, et al. 2013 Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6 4

    PubMed  PubMed Central  Google Scholar 

  • Kazan K and Manners JM 2009 Linking development to defense: auxin in plant-pathogen interactions. Trends Plant Sci. 14 373–382

    CAS  PubMed  Google Scholar 

  • Killiny N, Hijaz F, Harper SJ and Dawson WO 2017 Effects of Citrus tristeza closterovirus infection on phloem sap and released volatile organic compounds in Citrus macrophylla. Physiol. Mol. Plant Pathol. 98 25–36

    CAS  Google Scholar 

  • Kumar G, Jyothsna M, Valarmathi P, Roy S, Banerjee A, Tarafdar J, Senapati BK, Robin S, Manonmani S, Rabindran R and Dasgupta I 2019 Assessment of resistance to rice tungro disease in popular rice varieties in India by introgression of a transgene against Rice tungro bacilliform virus. Arch. Virol. 8 1-9

    CAS  Google Scholar 

  • Kumar V, Sharma R, Trivedi PC, Vyas GK and Khandelwal V 2011 Traditional and novel references towards systematic normalization of qRT-PCR data in plants. Aust. J. Crop Sci. 5 1455

    Google Scholar 

  • Kushwaha N, Singh AK, Basu S and Chakraborty S 2015 Differential response of diverse solanaceous hosts to tomato leaf curl New Delhi virus infection indicates coordinated action of NBS-LRR and RNAi-mediated host defense. Arch. Virol. 160 1499–1509

    CAS  PubMed  Google Scholar 

  • Laliberté J-F and Sanfaçon H 2010 Cellular remodeling during plant virus infection. Annu. Rev. Phytopathol. 48 69–91

    PubMed  Google Scholar 

  • Levine A, Tenhaken R, Dixon R and Lamb C 1994 H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79 583–593

    CAS  PubMed  Google Scholar 

  • Li Z and Burritt DJ 2003 The influence of Cocksfoot mottle virus on antioxidant metabolism in the leaves of Dactylis glomerata L. Physiol. Mol. Plant Pathol. 62 285–295

    CAS  Google Scholar 

  • Li Y, Qin L, Zhao J, Muhammad T, Cao H, Li H, Zhang Y and Liang Y 2017 SlMAPK3 enhances tolerance to tomato yellow leaf curl virus (TYLCV) by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum). PLoS One 12 e0172466

    PubMed  PubMed Central  Google Scholar 

  • Lim G-H, Singhal R, Kachroo A and Kachroo P 2017 Fatty acid- and lipid-mediated signaling in plant defense Annu. Rev. Phytopathol. 55 505–536

    CAS  Google Scholar 

  • Liu J and Whitham SA 2013 Overexpression of a soybean nuclear localized type–III DnaJ domain-containing HSP40 reveals its roles in cell death and disease resistance. Plant J. 74 110–121

    CAS  PubMed  Google Scholar 

  • Liu Y, Schiff M and Dinesh-Kumar SP 2004 Involvement of MEK1 MAPKK, NTF6 MAPK, WRKY/MYB transcription factors, COI1 and CTR1 in N-mediated resistance to tobacco mosaic virus. Plant J. 38 800–809

    CAS  PubMed  Google Scholar 

  • Liu Y, Schiff M, Serino G, Deng X-W and Dinesh-Kumar SP 2002 Role of SCF ubiquitin-ligase and the COP9 signalosome in the N gene–mediated resistance response to Tobacco mosaic virus. Plant Cell 14 1483–1496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Love AJ, Yun BW, Laval V, Loake GJ and Milner JJ 2005 Cauliflower mosaic virus, a compatible pathogen of Arabidopsis, engages three distinct defense-signaling pathways and activates rapid systemic generation of reactive oxygen species. Plant Physiol. 139 935–948

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Du ZX, Kong J, Chen LN, Qiu YH, Li GF, Meng XH and Zhu SF 2012 Transcriptome Analysis of Nicotiana tabacum Infected by Cucumber mosaic virus during systemic symptom development. PLoS One 7 e43447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maere S, Heymans K and Kuiper M 2005 BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21 3448–3449

    CAS  Google Scholar 

  • Majda M and Robert S 2018 The role of auxin in cell wall expansion. Int. J. Mol. Sci.19 951

    PubMed Central  Google Scholar 

  • McHale L, Tan X, Koehl P and Michelmore RW 2006 Plant NBS-LRR proteins: adaptable guards. Genome Biol. 7 212

    PubMed  PubMed Central  Google Scholar 

  • Moffett P, Farnham G, Peart J and Baulcombe DC 2002 Interaction between domains of a plant NBS–LRR protein in disease resistance-related cell death. EMBO J. 21 4511–4519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohanty SK and Sridhar R 1986 Physiology of rice tungro virus disease: Possible cause of carbohydrate and amino acid accumulation due to infection. Acta Phytopathol. Entomol. Hungarica 21 73–85

    CAS  Google Scholar 

  • Mohanty SK and Sridhar R 1989 Physiology of rice tungro virus-disease-changes in leaf pigments due to infection. Acta Phytopathol. Entomol. Hungarica 24 375–385

    Google Scholar 

  • Nagar S, Hanley-Bowdoin L and Robertson D 2002 Host DNA replication is induced by geminivirus infection of differentiated plant cells. Plant Cell 14 2995–3007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro L, Bari R, Achard P, Lisón P, Nemri A, Harberd NP and Jones JDG 2008 DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr. Biol. 18 650–655

    CAS  PubMed  Google Scholar 

  • Nelson RS and Citovsky V 2005 Plant viruses. Invaders of cells and pirates of cellular pathways. Plant Physiol. 138 1809–1814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Padmanabhan MS, Goregaoker SP, Golem S, Shiferaw H, Culver JN 2005 Interaction of the Tobacco mosaic virus replicase protein with the Aux/IAA protein PAP1/IAA26 is associated with disease development. J. Virol. 79 2549–2558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Padmanabhan MS, Kramer SR, Wang X and Culver JN 2008 Tobacco mosaic virus replicase-auxin/indole acetic acid protein interactions: reprogramming the auxin response pathway to enhance virus infection. J. Virol. 82 2477–2485

    CAS  PubMed  Google Scholar 

  • Pandey SP and Somssich IE 2009 The role of WRKY transcription factors in plant immunity. Plant Physiol. 150 1648–1655

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park C-J and Seo Y-S 2015 Heat shock proteins: a review of the molecular chaperones for plant immunity. Plant Pathol. J. 31 323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patarroyo C, Laliberté J-F and Zheng H 2013 Hijack it, change it: how do plant viruses utilize the host secretory pathway for efficient viral replication and spread? Front. Plant Sci. 3 308

    PubMed  PubMed Central  Google Scholar 

  • Pearce G, Moura DS, Stratmann J, Ryan CA 2001 RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development. Proc. Natl. Acad. Sci. 98 12843–12847

    CAS  PubMed  Google Scholar 

  • Piasecka A, Jedrzejczak-Rey N and Bednarek P 2015 Secondary metabolites in plant innate immunity: conserved function of divergent chemicals. New Phytol. 206 948–964

    PubMed  Google Scholar 

  • Pinheiro PV, Ghanim M, Alexander M, Rebelo AR, Santos RS, Orsburn BC, Gray S and Cilia M (2017) Host plants indirectly influence plant virus transmission by altering gut cysteine protease activity of aphid vectors. Mol. Cell Proteomics 16 S230–S243

    PubMed  Google Scholar 

  • Rahoutei J, García-Luque I and Barón M 2000 Inhibition of photosynthesis by viral infection: Effect on PSII structure and function. Physiol. Plant 110 286–292

    CAS  Google Scholar 

  • Ramírez V, Van der Ent S, García-Andrade J, Coego A, Pieterse CMJ and Vera P 2010 OCP3 is an important modulator of NPR1-mediated jasmonic acid-dependent induced defenses in Arabidopsis. BMC Plant Biol. 10

  • Robert-Seilaniantz A, Navarro L, Bari R and Jones JD 2007 Pathological hormone imbalances. Curr. Opin. Plant Biol. 10 372–379

    CAS  PubMed  Google Scholar 

  • Rodamilans B, Shan H, Pasin F and García JA 2018 Plant viral proteases: beyond the role of peptide cutters. Front. Plant Sci. 9 666

    PubMed  PubMed Central  Google Scholar 

  • Rosas-Díaz T, Macho AP, Beuzón CR, Lozano-Durán R and Bejarano ER 2016 The C2 protein from the geminivirus tomato yellow leaf curl sardinia virus decreases sensitivity to jasmonates and suppresses jasmonate-mediated defences. Plants 5 8

    PubMed Central  Google Scholar 

  • Sailaja B, Anjum N, Patil YK, Agarwal S, Malathi P, Krishnaveni D, Balachandran SM, Viraktamath BC and Mangrauthia SK 2013 The complete genome sequence of a south Indian isolate of Rice tungro spherical virus reveals evidence of genetic recombination between distinct isolates. Virus Genes 47 515

    CAS  PubMed  Google Scholar 

  • Sarkar NK, Kundnani P and Grover A 2013. Functional analysis of Hsp70 superfamily proteins of rice (Oryza sativa). Cell Stress Chaperones 18 427–437

    CAS  PubMed  Google Scholar 

  • Sarris PF, Duxbury Z, Huh SU, Ma Y, Segonzac C, Sklenar J, Derbyshire P, Cevik V, Rallapalli G, Saucet SB et al. 2015 A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell 161 1089–1100

    CAS  PubMed  Google Scholar 

  • Satoh K, Shimizu T, Kondoh H, Hiraguri A, Sasaya T, Choi IR, Omura T and Kikuchi S 2011 Relationship between symptoms and gene expression induced by the infection of three strains of Rice dwarf virus. PLoS One 6 https://doi.org/10.1371/journal.pone.0018094

    Article  PubMed  PubMed Central  Google Scholar 

  • Satoh K, Kondoh H, De Leon TB, Macalalad RJA, Cabunagan RC, Cabauatan PQ, Mauleon R, Kikuchi S and Choi IR 2013 Gene expression responses to Rice tungro spherical virus in susceptible and resistant near-isogenic rice plants. Virus Res. 171 111–120

    CAS  PubMed  Google Scholar 

  • Shackelford J and Pagano JS 2005 Targeting of host-cell ubiquitin pathways by viruses. Essays Biochem. 41 139–156

    CAS  PubMed  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T 2003 Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13 2498–2504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S and Dasgupta I 2012 Development of SYBR Green I based real-time PCR assays for quantitative detection of Rice tungro bacilliform virus and Rice tungro spherical virus. J. Virol. Methods 181 86–92

    CAS  PubMed  Google Scholar 

  • Sharma S, Kumar G and Dasgupta I 2018 Simultaneous resistance against the two viruses causing rice tungro disease using RNA interference. Virus Res. 255 64–157

    Google Scholar 

  • Shen P, Kaniewska M, Smith C and Beachy RN 1993 Nucleotide sequence and genomic organization of rice tungro spherical virus. Virology 193 621–630

    CAS  PubMed  Google Scholar 

  • Shi X, Botting CH, Li P, Niglas M, Brennan B, Shirran SL, Szemiel AM and Elliott RM 2016 Bunyamwera orthobunyavirus glycoprotein precursor is processed by cellular signal peptidase and signal peptide peptidase. Proc. Natl. Acad. Sci. 113 8825–8830

    CAS  PubMed  Google Scholar 

  • Shimizu T, Satoh K, Kikuchi S and Omura T 2007 The repression of cell wall- and plastid-related genes and the induction of defense-related genes in rice plants infected with Rice dwarf virus. Mol. Plant Microbe Interact. 20 247–254

    CAS  PubMed  Google Scholar 

  • Singh KB, Foley RC and Oñate-Sánchez L 2002 Transcription factors in plant defense and stress responses. Curr. Opin. Plant Biol. 5 430–436

    CAS  PubMed  Google Scholar 

  • Soellick T-R, Uhrig JF, Bucher GL, Kellmann J-W and Schreier PH 2000. The movement protein NSm of tomato spotted wilt tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins. Proc. Natl. Acad. Sci. 97 2373–2378

    CAS  PubMed  Google Scholar 

  • Sridhar R, Mohanty SK and Anjaneyulu A 1977 The role of abscisic acid-and cytokinin-like substances in rice tungro virus disease. In, Paper Abstr. All India Symp. Physiology of Host-Pathogen Interaction, Centre for Advanced Studies in Botany, University of Madras p 26

  • Sridhar R, Mohanty SK and Anjaneyulu A 1978 Physiology of rice tungro virus disease: increased cytokinin activity in tungro-infected rice cultivars. Physiol. Plant 43 363–366

    CAS  Google Scholar 

  • Sridhar R, Reddy PR and Anjaneyulu A 1976 Physiology of rice tungro virus disease: Changes in chlorophyll, carbohydrates, amino acids and phenol contents. J. Phytopathol. 86 136–143

    CAS  Google Scholar 

  • Srilatha P, Yousuf F, Methre R, Vishnukiran T, Agarwal S, Poli Y, Reddy MR, Vidyasagar B, Shanker C, Krishnaveni D and Triveni S 2019 Physical interaction of RTBV ORFI with D1 protein of Oryza sativa and Fe/Zn homeostasis play a key role in symptoms development during rice tungro disease to facilitate the insect mediated virus transmission. Virology 526 117–124

    CAS  PubMed  Google Scholar 

  • Srinivasulu B and Jeyarajan R 1989 Bio-chemical alterations in rice leaf components infected with rice tungro virus. Indian Phytopathol. 42 454–455

    Google Scholar 

  • Stracke R, Werber M and Weisshaar B 2001 The R2R3-MYB gene family in Arabidopsis thaliana. Curr. Opin. Plant Biol. 4 447–456

    CAS  PubMed  Google Scholar 

  • Subba Rao BL, Ghosh A and John VT 1979 Effect of rice tungro virus on chlorophyll and anthocyanin pigments in two rice cultivars. J. Phytopathol. 94 367–371

    Google Scholar 

  • Teale WD, Paponov IA and Palme K 2006 Auxin in action: signalling, transport and the control of plant growth and development. Nat. Rev. Mol. Cell Biol. 7 847

    CAS  PubMed  Google Scholar 

  • Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY and Stitt M 2004 MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 37 914–939

    CAS  PubMed  Google Scholar 

  • Thomas E and van der Hoorn R 2018 Ten prominent host proteases in plant-pathogen interactions. Int. J. Mol. Sci. 19 639

    PubMed Central  Google Scholar 

  • Thompson JR, Dasgupta I, Fuchs M, Iwanami T, Karasev A V, Petrzik K, Sanfaçon H, Tzanetakis I, van der Vlugt R, Wetzel T et al. 2017 ICTV Virus Taxonomy Profile: Secoviridae. J. Gen. Virol. 98 529–531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torres MA, Jones JDG and Dangl JL 2006 Reactive oxygen species signaling in response to pathogens. Plant Physiol. 141 373–378

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL and Pachter L 2012 Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7 562–578

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valarmathi P, Kumar G, Robin S, Manonmani S, Dasgupta I and Rabindran R 2016 Evaluation of virus resistance and agronomic performance of rice cultivar ASD 16 after transfer of transgene against Rice tungro bacilliform virus by backcross breeding. Virus Genes 52 521–529

    CAS  PubMed  Google Scholar 

  • Xie K, Li L, Zhang H, Wang R, Tan X, He Y, Hong G, Li J et al 2018 Abscisic acid negatively modulates plant defence against rice black-streaked dwarf virus infection by suppressing the jasmonate pathway and regulating reactive oxygen species levels in rice. Plant. Cell Environ. 41 2504–2514

    CAS  PubMed  Google Scholar 

  • Xu H, Bao JD, Dai JS, Li Y and Zhu Y 2015 Genome-Wide Identification of New Reference Genes for qRT-PCR Normalization under High Temperature Stress in Rice Endosperm. PLoS One 10 e0142015

    PubMed  PubMed Central  Google Scholar 

  • Xun H, Yang X, He H, Wang M, Guo P, Wang Y, Pang J, Dong Y, Feng X, Wang S and Liu B 2018. Over-expression of GmKR3, a TIR–NBS–LRR type R gene, confers resistance to multiple viruses in soybean. Plant Mol. Biol. 99 95–111

    PubMed  Google Scholar 

  • Yadav BP and Mishra MD 1987 Metabolic changes induced by rice tungro virus in rice cultivars. Indian Phytopathol. 40 139–148

    Google Scholar 

  • Yang D, Du X, Liang X, Han R, Liang Z, Liu Y, Liu F and Zhao J 2012 Different Roles of the Mevalonate and Methylerythritol Phosphate Pathways in Cell Growth and Tanshinone Production of Salvia miltiorrhiza Hairy Roots. PLoS One 7 e46797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M, Li Z, Zhang K, Zhang X, Zhang Y, Wang X, Han C, Yu J, Xu K and Li D 2018 Barley stripe mosaic virus γb interacts with glycolate oxidase and inhibits peroxisomal ROS production to facilitate virus infection. Mol. Plant 11 338–341

    CAS  PubMed  Google Scholar 

  • Yang T, Zhu L, Meng Y, Lv R, Zhou Z, Zhu L, Lin H and Xi D 2017 Alpha-momorcharin enhances Tobacco mosaic virus resistance in tobacco NN by manipulating jasmonic acid-salicylic acid crosstalk. J. Plant Physiol. 223 116–126

    PubMed  Google Scholar 

  • Yi S-Y, Yu S-H and Choi D 2003 Involvement of hydrogen peroxide in repression of catalase in TMV-infected resistant tobacco. Mol. Cells 15 364–369

    CAS  PubMed  Google Scholar 

  • Zarreen F, Kumar G, Johnson AA and Dasgupta I. 2018 Small RNA-based interactions between rice and the viruses which cause the tungro disease. Virology 523 64–73

    CAS  PubMed  Google Scholar 

  • Zaynab M, Fatima M, Abbas S, Sharif Y, Umair M, Zafar MH and Bahadar K 2018 Role of secondary metabolites in plant defense against pathogens. Microb. Pathog. 124 198–202

    CAS  PubMed  Google Scholar 

  • Zhao S, Hong W, Wu J, Wang Y, Ji S, Zhu S, Wei C, Zhang J and Li Y 2017. A viral protein promotes host SAMS1 activity and ethylene production for the benefit of virus infection. Elife 6 e27529

    PubMed  PubMed Central  Google Scholar 

  • Zhang C, Ding Z, Wu K, Yang L, Li Y, Yang Z, Shi S, Liu X, Zhao S and Yang Z 2016 Suppression of jasmonic acid-mediated defense by viral-inducible MicroRNA319 facilitates virus infection in rice. Mol. Plant 9 1302–1314

    CAS  PubMed  Google Scholar 

  • Zhang D-W, Deng X-G, Fu F-Q and Lin H-H 2015 Induction of plant virus defense response by brassinosteroids and brassinosteroid signaling in Arabidopsis thaliana. Planta 241 875–885

    CAS  PubMed  Google Scholar 

  • Zhang Z, Zhang H, Quan R, Wang X.-C and Huang R 2009 Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. Plant Physiol. 150 365–377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zorzatto C, Machado JPB, Lopes KVG, Nascimento KJT, Pereira WA, Brustolini OJB, Reis PAB, Calil IP et al. 2015 NIK1-mediated translation suppression functions as a plant antiviral immunity mechanism. Nature 520 679

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was supported by the financial support from University of Delhi (DU) in the form of grants of R&D, DU-DST PURSE and infrastructural support from DST-FIST. GK is indebted to University Grants Commission, New Delhi, for research fellowship during this work. The gift of PB1 seeds from IARI, New Delhi, and RTD-affected plants from ICAR-IIRR, Hyderabad, are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indranil Dasgupta.

Ethics declarations

The work was performed keeping in mind all applicable ethical standards.

Additional information

Communicated by BJ Rao.

Corresponding editor: BJ rao

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 160 kb)

Supplementary material 2 (TIFF 127 kb)

Supplementary material 3 (TIFF 365 kb)

Supplementary material 4 (TIFF 958 kb)

Supplementary material 5 (TIFF 937 kb)

Supplementary material 6 (TIFF 514 kb)

Supplementary material 7 (TIFF 565 kb)

Supplementary material 8 (TIFF 163 kb)

Supplementary material 9 (PDF 760 kb)

Supplementary material 10 (PDF 4803 kb)

Supplementary material 11 (TIFF 321 kb)

Supplementary material 12 (TIFF 133 kb)

Supplementary material 13 (TIFF 869 kb)

Supplementary material 14 (TIFF 656 kb)

Supplementary material 15 (TIFF 2261 kb)

Supplementary material 16 (TIFF 1043 kb)

Supplementary material 17 (TIFF 762 kb)

Supplementary material 18 (TIFF 1110 kb)

Supplementary material 19 (TIFF 356 kb)

Supplementary material 20 (TIFF 476 kb)

Supplementary material 21 (TIFF 483 kb)

Supplementary material 22 (TIFF 696 kb)

Supplementary material 23 (DOCX 15 kb)

Supplementary material 24 (DOCX 13 kb)

Supplementary material 25 (DOCX 12 kb)

Supplementary material 26 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, G., Dasgupta, I. Comprehensive molecular insights into the stress response dynamics of rice (Oryza sativa L.) during rice tungro disease by RNA-seq-based comparative whole transcriptome analysis. J Biosci 45, 27 (2020). https://doi.org/10.1007/s12038-020-9996-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-020-9996-x

Keywords

Navigation