Skip to main content
Log in

Comparative physiological and leaf proteome analysis between drought-tolerant chickpea Cicer reticulatum and drought-sensitive chickpea C. arietinum

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Comparative physiological and proteomic analysis were performed to understand the stress responses of two chickpea species (C. reticulatum and C. arietinum) against drought. Our study revealed that drought stress reduced root length, leaf water content, and enhanced free proline content in both species. Effect of drought stress appeared to be greater in C. arietinum compared to C. reticulatum. A total of 24 differently expressed proteins were identified by using MALDI-TOF/TOF-MS/MS in response to drought. The proteins involved in photosynthesis and energy mechanisms were up-regulated in C. reticulatum and down-regulated in C. arietinum under drought. Our results suggest that the photosynthesis capacity of C. reticulatum is greater than that of C. arietinum under drought stress. Abundance of proline and sucrose biosynthesis related proteins, glutamine synthetase and cyctosolic fructose-bisphosphate aldolase, respectively, also increased in C. reticulatum under drought stress. The findings of this proteome analysis will help in understanding the mechanism of drought resistance in chickpea and may be also helpful in developing drought-resistant transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

COX:

cytochrome c oxidase

FBA:

fructose-bisphosphate aldolase

FNR:

ferredoxin-NADP reductase

GME:

GDP-mannose-epimerase

GS:

glutamine synthetase

G3PDH:

glyceraldehyde-3-phosphate dehydrogenase

IFR:

ısoflavone reductase

LHCB:

light-harvesting chlorophyll a/b-binding protein

LWP:

leaf water potential

OEE1:

oxygen evolving enhancer protein 1

OEE2:

oxygen evolving enhancer protein 2

PGK:

phosphoglycerate kinase

ROS:

reactive oxygen species

RWC:

relative water content

SBPase:

sedoheptulose-1,7-bisphosphatase

2D-PAGE:

two-dimensional polyacrylamide gel electrophoresis

References

  • Andersson J, Walters RG, Horton P and Jansson S 2001 Antisense inhibition of the photosynthetic antenna proteins CP29 and CP26: implications for the mechanism of protective energy dissipation. Plant Cell 13 1193–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf M and O’leary JW 1996 Effect of drought stress on growth, water relations, and gas exchange of two lines of sunflower differing in degree of salt tolerance. Int. J. Plant Sci. 157 729–732

    Article  Google Scholar 

  • Bai Z, Wang T, Wu Y, Wang K, Liang Q, Pan YZ, Jiang BB, Zhang L, et al. 2017 Whole-transcriptome sequence analysis of differentially expressed genes in Phormium tenax under drought stress. Sci. Rep. 7 1–9

    Article  CAS  Google Scholar 

  • Basu PS, Berger JD, Turner NC, Chaturvedi SK, Ali M and Siddique KHM 2007 Osmotic adjustment of chickpea (Cicer arietinum) is not associated with changes in carbohydrate composition or leaf gas exchange under drought. Annals Appl. Biol. 150 217–225

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP and Teare ID 1973 Rapid determination of free proline for water-stress studies. Plant Soil 39 205–207

    Article  CAS  Google Scholar 

  • Bogeat-Triboulot MB, Brosché M, Renaut J, Jouve L, Le Thiec D, Fayyaz P, Vinocur B, Witters E, et al. 2007 Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions. Plant Physiol. 143 876–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bollenbach TJ, Tatman DA and Stern DB 2003 CSP41a, a multifunctional RNAbinding protein, initiates mRNA turnover in tobacco chloroplasts. Plant J. 36 842–852

    Article  CAS  PubMed  Google Scholar 

  • Budak H, Akpinar BA, Unver T and Turktas M 2013 Proteome changes in wild and modern wheat leaves upon drought stress by two-dimensional electrophoresis and nanoLC-ESI–MS/MS. Plant Mol. Biol. 83 89–103

    Article  CAS  PubMed  Google Scholar 

  • Canci H and Toker C 2009 Evaluation of yield criteria for drought and heat resistance in chickpea (Cicer arietinum L.). J. Agronomy Crop Sci. 195 47–54

    Article  Google Scholar 

  • Caruso G, Cavaliere C, Guarino C, Gubbiotti R, Foglia P and Laganà A 2008 Identification of changes in Triticum durum L. leaf proteome in response to salt stress by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. Analyt. Bioanalyt. Chem. 391 381–390

    Article  CAS  Google Scholar 

  • Çevik S, Yıldızlı A, Yandım G, Göksu H, Gultekin MS, Değer AG, Çelik A, Kuş NŞ, et al. 2014 Some synthetic cyclitol derivatives alleviate the effect of water deficit in cultivated and wild-type chickpea species. J. Plant Physiol. 171 807–816

    Article  CAS  PubMed  Google Scholar 

  • Çevik S and Unyayar S 2015 The effects of exogenous application of ascorbate and glutathione on antioxidant system in cultivated Cicer arietinum and wild type C. reticulatum under drought stress. SDU J. Nat. Appl. Sci. 19 91–97

    Google Scholar 

  • Chung PJ, Jung H, Jeong DH, Ha SH, Choi YD and Kim JK 2016 Transcriptome profiling of drought responsive noncoding RNAs and their target genes in rice. BMC Genomics 17 563–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolatabadian A, Sanavy SAMM and Chashmi NA 2008 The effects of foliar application of as- corbic acid (vitamin C) on antioxidant enzymes activities, lipid peroxidation and proline accumulation of canola (Brassica napus L.) under conditions of salt stress. J. Agronomy Crop Sci. 194 206–213

    Article  CAS  Google Scholar 

  • Dong Y, Fan G, Deng M, Xu E and Zhao Z 2014 Genome-wide expression profiling of the transcriptomes of four Paulownia tomentosa accessions in response to drought. Genomics 104 295–305

    Article  CAS  PubMed  Google Scholar 

  • Faghani E, Gharechahi J, Komatsu S, Mirzaei M, Khavarinejad RA, Najafi F, Farsad LK and Salekdeh GH 2015 Comparative physiology and proteomic analysis of two wheat genotypes contrasting in drought tolerance. J. Proteomics 114 1–15

    Article  CAS  PubMed  Google Scholar 

  • Fambuena NM, Mesejo C, Reig C, Agustí M, Tárraga S, Lisón P, Iglesias DJ, Millo EP, et al. 2013 Proteomic study of Moncada mandarin buds from onversus off-crop trees. Plant Physiol. Biochem. 73 41–55

    Article  CAS  Google Scholar 

  • Fan W, Zhang Z and Zhang Y 2009 Cloning and molecular characterization of fructose1,6-bisphosphate aldolase gene regulated by high salinity and drought in Sesuvium portulacastrum. Plant Cell Rep. 28 975–984

    Article  CAS  PubMed  Google Scholar 

  • Fang X, Turner NC, Yan G, Li F and Siddique KHM 2010 Flower numbers, pod production, pollen viability, and pistil function are reduced and flower and pod abortion increased in chickpea (Cicer arietinum L.) under terminal drought. J. Exp. Bot. 61 335–345

    Article  CAS  PubMed  Google Scholar 

  • Garg R, Shankar R, Thakkar B, Kudapa H, Krishnamurthy L, Mantri N, Varshney RK, Bhatia S, et al. 2016 Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Sci. Rep. 6 1–15

    Article  CAS  Google Scholar 

  • Ghabooli M, Khatabi B, Ahmadi FS, Sepehri M, Mirzaei M, Amirkhani A, Novo JVJ and Salekdeh GH 2013 Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Piriformospora indica in barley. J. Proteomics 94 289–301

    Article  CAS  PubMed  Google Scholar 

  • Gharechahi J, Hajirezaei MR and Salekdeh GH 2015 Comparative proteomic analysis of tobacco expressing cyanobacterial flavodoxin and its wild type under drought stress. J. Plant Physiol. 175 48–58

    Article  CAS  PubMed  Google Scholar 

  • Görg A, Postel W and Günther S 1988 The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 9 531–546

    Article  PubMed  Google Scholar 

  • Gunes A, Cicek A, Inal M, Alpaslan F, Eraslan E Guneri and T Guzelordu 2006 Genotypic response of chickpea (Cicer arietinum L.) cultivars to drought stress implemented at pre and post-anthesis stages and its relations with nutrient uptake and efficiency. Plant Soil Environ. 52 368–376

    Article  CAS  Google Scholar 

  • Haake V, Zrenner R, Sonnewald U and Stitt M 1998 A moderate decrease of plastid aldolase activity inhibits photosynthesis, alters the levels of sugars and starch, and inhibits growth of potato plants. Plant J. 14 147–157

    Article  CAS  PubMed  Google Scholar 

  • Hajirezaei MR, Peisker M, Tschiersch H, Palatnik JF, Valle EM, Carrillo N and Sonnewald U 2002 Small changes in the activity of chloroplastic NADP+-dependent ferredoxin oxidoreductase lead to impaired plant growth and restrict photosynthetic activity of transgenic tobacco plants. Plant J. 29 281–293

    Article  CAS  PubMed  Google Scholar 

  • Heide H, Kalisz HM and Follmann H 2004 The oxygen evolving enhancer protein 1 (OEE) of photosystem II in green algae exhibits thioredoxin activity. J. Plant Physiol. 161 139–149

    Article  CAS  PubMed  Google Scholar 

  • Hu WJ, Chen J, Liu TW, Wu Q, Wang WH, Liu X, Shen ZJ, Simon M, et al. 2014 Proteome and calcium-related gene expression in Pinus massoniana needles in response to acid rain under different calcium levels. Plant Soil 380 285–303

    Article  CAS  Google Scholar 

  • Hu X, Lu M, Li C, Liu T, Wang W, Wu J, Tai F, Li X, et al. 2011 Differential expression of proteins in maize roots in response to abscisic acid and drought. Acta Physiologiae Plantarum 33 2437–2446

    Article  CAS  Google Scholar 

  • Jaiswal DK, Mishra P, Subba P, Rathi D, Chakraborty S and Chakraborty N 2014 Membrane-associated proteomics of chickpea identifies Sad1/UNC-84 protein (CaSUN1), a novel component of dehydration signalling. Sci. Rep. 4 4177–4187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaleel CA, Manivannan P, Wahid A, Farooq M, Al-Juburi MJ, Somasundaram R and Panneerselvam R 2009 Drought stress in plants: a review on morphological characteristics and pigments composition. Int. J. Agric. Biol. 11 100–105

    Google Scholar 

  • Jedmowski C, Ashoub A, Beckhaus T, Berberich T, Karas M and Brüggemann W 2014 Comparative analysis of Sorghum bicolor proteome in response to drought stress and following recovery. Int. J. Proteomics 2014 1–10

    Article  CAS  Google Scholar 

  • José VG, Raquel GF, Rafael MNC, Eustaquio GP and Jesús VJN 2013 Physiological and proteomic analyses of drought stress response in Holm Oak provenances. J. Proteome Res. 12 5110–5123

    Article  CAS  Google Scholar 

  • Kim EY, Choi YH, Lee JI, Kim IH and Nam TJ 2015 Antioxidant activity of oxygen evolving enhancer protein 1 purified from Capsosiphon fulvescens. J. Food Sci. 80 1412–1417

    Article  CAS  Google Scholar 

  • Kim ST, Cho KS, Jang YS and Kang KY 2001 Two-dimensional electrophoretic analysis of rice proteins by polyethylene glycol fractionation for protein arrays. Electrophoresis 22 2103–2109

    Article  CAS  PubMed  Google Scholar 

  • Kim ST, Cho KS, Yu S, Kim SG, Hong JC, Han C, Bae DW, Nam MH, et al. 2003 Proteomic analysis of differentially expressed proteins induced by rice blast fungus and elicitor in suspension-cultured rice cells. Proteomics 3 2368–2378

    Article  CAS  PubMed  Google Scholar 

  • Krouma A 2010 Plant water relations and photosynthetic activity in three Tunisian chickpeas (Cicer arietinum L.) genotypes subjected to drought. Turkish J. Agric. Forest. 34 257–264

    CAS  Google Scholar 

  • Laemmli UK 1970 Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 680–685

    Article  CAS  PubMed  Google Scholar 

  • Lawlor DW and Cornic G 2002 Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ. 25 275–294

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre S, Lawson T, Zakhleniuk OV, Lloyd JC, Raines CA and Fryer M 2005 Increased sedoheptulose-1,7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. Plant Physiol. 138 451–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leport L, Turner NC, French RJ, Barr MD, Duda R, Davies SL, Tennant D and Siddique KHM 1999 Physiological responses of chickpea genotypes to terminal drought in a Mediterranean-type environment. Eur. J. Agronomy 11 279–291

    Article  Google Scholar 

  • Lhout FA, Zunzunegui M, Barradas MCD, Tirado R, Clavijo A and Novo FG 2001 Comparison of proline accumulation in two mediterranean shrubs subjected to natural and experimental water deficit. Plant Soil 230 175–183

    Article  Google Scholar 

  • Lisar SYS, Motafakkerazad R, Hossain MM and Rahman IMM 2012 Water Stress in Plants: Causes, Effects and Responses. (eds) Rahman IMM Rijeka, Croatia, pp 1–14

  • Lum MS, Hanafi MM, Rafii YM and Akmar ASN 2014 Effect of drought stress on growth, proline and antioxidant enzyme activities of upland rice. J. Anim. Plant Sci. 24 1487–1493

    Google Scholar 

  • Ma L, Wang Y, Liu W and Liu Z 2014 Overexpression of an alfalfa GDP-mannose 3, 5- epimerase gene enhances acid, drought and salt tolerance in transgenic Arabidopsis by increasing ascorbate accumulation. Biotechnol. Lett. 36 2331–2341

    Article  CAS  PubMed  Google Scholar 

  • Macar TK, Turan O and Ekmekci Y 2009 Effects of water deficit induced by PEG and NaCl on chickpea (Cicer arietinum L.) cultivars and lines at early seedling stages. Gazi Univ. J. Sci. 22 5–14

    Google Scholar 

  • Mafakheri A, Siosemardeh A, Bahramnejad B, Struik PC Sohrabi Y 2010 Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aust. J. Crop Sci. 4 580–585

    CAS  Google Scholar 

  • Manac’h N and Kuntz M 1999 Stress induction of a nuclear gene encoding for a plastid protein is mediated by photo-oxidative events. Plant Physiol. Biochem. 37 859–868

    Article  PubMed  Google Scholar 

  • Mantri NL, Ford R, Coram TE and Pang EC 2007 Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought. BMC Genomics. 8 303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy Z, Németh E, Guóth A, Bona L, Wodala B and Pécsváradi A 2013 Metabolic indicators of drought stress tolerance in wheat: Glutamine synthetase isoenzymes and Rubisco. Plant Physiol. Biochem. 67 48–54

    Article  CAS  PubMed  Google Scholar 

  • Nayyar H and Chander S 2004 Protective effects of polyamines against oxidative stress induced by water and cold stress in chickpea. J. Agronomy Crop Sci. 190 355–365

    Article  CAS  Google Scholar 

  • Nedunchezhiyan M, Byju G and Ray RC 2012 Effect of tillage, irrigation, and nutrient levels on growth and yield of sweet potato in rice fallow. ISRN Agronomy 2012 1–13

    Article  Google Scholar 

  • Ngamhui NO, Akkasaeng C, Zhu YJ, Tantisuwichwong N, Roytrakul S and Sansayawichai T 2012 Differentially expressed proteins in sugarcane leaves in response to water deficit stress. Plant Omics 5 365–371

    CAS  Google Scholar 

  • Nouri MZ, Moumeni A and Komatsu S 2015 Abiotic Stresses: Insight into gene regulation and protein expression in photosynthetic pathways of plants. Int. J. Mol. Sci. 16 20392–20416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh MW and Komatsu S 2015 Characterization of proteins in soybean roots under flooding and drought stresses. J. Proteomics 114 161–181

    Article  CAS  PubMed  Google Scholar 

  • Pandey A, Chakraborty S, Datta A and Chakraborty N 2008 Proteomics approach to identify dehydration responsive nuclear proteins from chickpea (Cicer arietinum L.). Mol. Cell. Proteomics 7 88–107

    Article  CAS  PubMed  Google Scholar 

  • Pawłowski TA 2009 Proteome analysis of Norway maple (Acer platanoides L.) seeds dormancy breaking and germination: influence of abscisic and gibberellic acids. BMC Plant Biol. 9 48–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahbarian R, Nejad RK, Ganjeali A, Bagheri A and Najafi F 2011 Drought stress effects on photosynthesis, chlorophyll fluorescence and water relations in tolerant and susceptible chickpea (Cicer arietınum L.) genotypes. Acta Biologica Cracoviensia Series Botanica 53 47–56

    Google Scholar 

  • Raines CA 2003 The Calvin cycle revisited. Photosynthesis Res. 75 1–10

    Article  CAS  Google Scholar 

  • Roy A 2014 Proteomic analyses of alterations in plant proteome under drought stress; in Molecular approaches in plant abiotic stress (eds) Gaur RK and Sharma P 1st edition (Taylor & Francis Group, Florida) pp 232–247

    Google Scholar 

  • Sabaghpour SH, Mahmoudi AA, Saeed A, Kamel M and Malhotra RS 2006 Study of chickpea drought tolerance lines under dryland conditions of Iran. Indian J. Crop Sci. 1 70–73

    Google Scholar 

  • Sanda S, Yoshida K, Kuwano M, Kawamura T, Munekage YN, Akashi K and Yokota A 2011 Responses of the photosynthetic electron transport system to excess light energy caused by water deficit in wild watermelon. Physiologia Plantarum 142 247–264

    Article  CAS  PubMed  Google Scholar 

  • Sankar B, Jaleel CA, Manivannan P, Kishorekumar A, Somasundaram R and Panneerselvam R 2007 Drought induced biochemical modifications and proline metabolism in Abelmoschus esculentus (L.) Moench. Acta Botanica Croatica 66 43–56

    CAS  Google Scholar 

  • Siddique RB, Hamid A and Islam MS 2000 Drought stress effects on water relations of wheat. Bot. Bull. Acad. Sinica 41 35–39

    Google Scholar 

  • Smart RE and Bingham GE 1974 Rapid estimation of relative water content. Plant Physiol. 53 258–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabados L and Savoure A 2010 Proline: a multifunctional amino acid. Trends Plant Sci. 15 89–97

    Article  CAS  PubMed  Google Scholar 

  • Talebi R, Ensafi MH, Baghebani N, Karami E and Mohammadi K 2013 Physiological responses of chickpea (Cicer arietinum) genotypes to drought stress. Environ. Exp. Biol. 11 9–15

    Google Scholar 

  • Tezara W, Mitchell VJ, Driscoll SD and Lawlor DW 1999 Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401 914–917

    Article  CAS  Google Scholar 

  • Toker C and Cagirgan MI 1998 Assessment of response to drought stress of chickpea (Cicer arietinum L.) lines under rainfed conditions. Turkish J. Agric. Forest. 22 615–621

    Google Scholar 

  • Turner NC, Abbo S, Berger JD, Chaturvedi SK, French RJ, Ludwig C, Mannur DM, Singh SJ, et al. 2007 Osmotic adjustment in chickpea (Cicer arietinum L.) results in no yield benefit under terminal drought. J. Exp. Bot. 58 187–194

    Article  CAS  PubMed  Google Scholar 

  • Uematsu K, Suzuki N, Iwamae T, Inui M and Yukawa H 2012 Increased fructose 1,6- bisphosphate aldolase in plastids enhances growth and photosynthesis of tobacco plants. J. Exp. Bot. 63 3001–3009

    Article  CAS  PubMed  Google Scholar 

  • Unlu M, Morgan ME and Minden JS 1997 Difference gel electrophoresis: A single gel method for detecting changes in protein extracts. Electrophoresis 18 2071–2077

    Article  CAS  PubMed  Google Scholar 

  • Vendruscolo ECG, Schuster I, Pileggi M, Scapimd CA, Molinarie HBC, Marure CJ and Vieira LGE 2007 Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J. Plant Physiol. 164 1367–1376

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Pana D, Lia J, Tane F, Benningc SH, Liangd W and Chen W 2015a Proteomic analysis of changes in the Kandelia candel chloroplast proteins reveals pathways associated with salt tolerance. Plant Sci. 231 159–172

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Zhao J, He X, Sun H, Zhang G, and Wu F 2015b Comparative proteomic analysis of drought tolerance in the two contrasting Tibetan wild genotypes and cultivated genotype. BMC Genomics 16 432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao XW, Yang F, Zhang S, Korpelainen H and Li CY 2009 Physiological and proteomic responses of two contrasting Populus cathayana populations to drought stress. Physiologia Plantarum 136 150–168

    Article  CAS  PubMed  Google Scholar 

  • Xu YH, Liu R, Yan L, Liu ZQ, Jiang SC, Shen YY, Wang XF and Zhang DP 2012 Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in. Arabidopsis. J. Exp. Bot. 63 1095–1106

    Article  CAS  PubMed  Google Scholar 

  • Yan W, Zhong Y and Shangguan Z 2016 A meta-analysis of leaf gas exchange and water status responses to drought. Sci. Rep. 6 1–9

    Article  CAS  Google Scholar 

  • Yang ZB, Eticha D, Führs H, Heintz D, Ayoub D, Dorsselaer AV, Schlingmann B, Rao IM, et al. 2013 Proteomic and phosphoproteomic analysis of polyethylene glycol-induced osmotic stress in root tips of common bean (Phaseolus vulgaris L.). J. Exp. Bot. 64 5569–5586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zadražnik T, Hollung K, Jacobsen WE, Megliča V and Vozliča JS 2013 Differential proteomic analysis of drought stress response in leaves of common bean (Phaseolus vulgaris L.). J. Proteomics 78 254–272

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhang H, Zou ZR, Liu Y and Hua XH 2015 Deciphering the protective role of spermidine against saline–alkaline stress at physiological and proteomic levels in tomato. Phytochemistry 110 13–21

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Dua H, Wanga Z and Huang B 2011 Identification of proteins associated with water-deficit tolerance in C4 perennial grass species, Cynodon dactylon × Cynodon transvaalensis and Cynodon dactylon. Physiologia Plantarum 141 40–55

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Wang X, Jiao Y, Qin Y, Liu X, He K, Chen C, Ma L, et al. 2007 Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Mol. Biol. 63 591–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Dr. Cengiz Toker (Department of Field Crops, Faculty of Agriculture, Akdeniz University, Antalya, Turkey) for providing the plant material. The manuscript was linguistically supported by the Technology Transfer Office Academic Writing Center of Mersin University. This work was supported by the University of Mersin; Project number is BAP-FBE BB (SÇ) 2012-4 DR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sertan Çevik.

Additional information

Corresponding editor: Ashis Kumar Nandi

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 737 kb)

Supplementary material 2 (XLSX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çevik, S., Akpinar, G., Yildizli, A. et al. Comparative physiological and leaf proteome analysis between drought-tolerant chickpea Cicer reticulatum and drought-sensitive chickpea C. arietinum. J Biosci 44, 20 (2019). https://doi.org/10.1007/s12038-018-9836-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-018-9836-4

Keywords

Navigation