Skip to main content
Log in

Pyrroloquinoline-quinone and its versatile roles in biological processes

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Pyrroloquinoline-quinine (PQQ) was initially characterized as a redox cofactor for membrane-bound dehydrogenases in the bacterial system. Subsequently, PQQ was shown to be an antioxidant protecting the living cells from oxidative damage in vivo and the biomolecules from artificially produced reaction oxygen species in vitro. The presence of PQQ has been documented from different biological samples. It functions as a nutrient and vitamin for supporting the growth and protection of living cells under stress. Recently, the role of PQQ has also been shown as a bio-control agent for plant fungal pathogens, an inducer for proteins kinases involved in cellular differentiation of mammalian cells and as a redox sensor leading to development of biosensor. Recent reviews published on PQQ and enzymes requiring this cofactor have brought forth the case specific roles of PQQ. This review covers the comprehensive information on various aspects of PQQ known till date. These include the roles of PQQ in the regulation of cellular growth and differentiation in mammalian system, as a nutrient and vitamin in stress tolerance, in crop productivity through increasing the availability of insoluble phosphate and as a bio-control agent, and as a redox agent leading to the biosensor development. Most recent findings correlating the exceptionally high redox recycling ability of PQQ to its potential as anti-neurodegenerative, anticancer and pharmacological agents, and as a signalling molecule have been distinctly brought out. This review discusses different findings suggesting the versatility in PQQ functions and provides the most plausible intellectual basis to the ubiquitous roles of this compound in a large number of biological processes, as a nutrient and a perspective vitamin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Ahmed N and Shahab S 2010 Involvement of bacterial pyrroloquinoline in plant growth promotion: A novel discovery. World App. Sci. J. 8 57–61

    CAS  Google Scholar 

  • Aizenman E, Hartnett KA, Zhong C, Gallop PM and Rosenberg PA 1992 Interaction of the putative essential nutrient pyrroloquinoline quinone with the N-methyl-D-aspartate receptor redox modulatory site. J. Neurosci. 12 2362–2369

    PubMed  CAS  Google Scholar 

  • Ameyama M, Matsushita K, Shinagawa E, Hayashi M and Adachi O 1988 Pyrroloquinoline quinone excretion by methylotrophs and growth stimulation for microorganism. Biofactors 1 51–53

    PubMed  CAS  Google Scholar 

  • Babu-Khan S, Yeo TC, Martin WL, Duron MR, Rogers RD and Goldstein AH 1995 Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia. Appl. Environ. Microbiol. 61 972–978

    Google Scholar 

  • Bashan Y and de-Bashan LE 2002 Protection of tomato seedlings against infection by Pseudomonas syringae pv. tomato by using the plant growth-promoting bacterium Azospirillum brasilense. Appl. Environ. Microbiol. 68 2637–2643

    Article  PubMed  CAS  Google Scholar 

  • Bernardelli CE, Luna, MF, Galar ML and Boiardi JL 2008 Symbiotic phenotype of a membrane-bound glucose dehydrogenase mutant of Sinorhizobium meliloti. Plant Soil 313 217–225

    Article  CAS  Google Scholar 

  • Bhattacharjee RB, Singh A and Mukhopadhyay SN 2008 Use of nitrogen fixing bacteria as biofertilizer for non-legumes perspectives and challenges. Appl. Microbiol. Biotechnol. 80 199–209

    Article  PubMed  CAS  Google Scholar 

  • Bolton JL, Trush MA, Penning TM, Dryhurst G and Monks TJ 2000 Role of quinones in toxicology. Chem. Res. Toxicol. 13 135–160

    Article  PubMed  CAS  Google Scholar 

  • Boots AW, Kubben N, Haenen GR and Bast A 2003 Oxidized quercetin reacts with thiols rather than with ascorbate implication for quercetin supplementation. Biochem. Biophys. Res. Commun. 308 560–565

    Article  PubMed  CAS  Google Scholar 

  • Boots AW, Li H, Schins RP, Duffin R, Heemskerk JWM, Bast A and Haenen GRMM 2007 The quercetin paradox. Toxicol. Appl. Pharmacol. 222 89–96

    Article  PubMed  CAS  Google Scholar 

  • Calvo J, Calvente V, de Orellano ME, Benuzzi D and Sanz de Tosetti MI 2007 Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis. Int. J. Food Microbiol. 113 251–257

    Article  PubMed  Google Scholar 

  • Charlson ES, Werner JN and Misra R 2006 Differential effects of yfgL mutation on Escherichia coli outer membrane proteins. J. Bacteriol. 188 7186–7194

    Article  PubMed  CAS  Google Scholar 

  • Cheng Q 2008 Perspectives in biological nitrogen fixation research. J. Integr. Plant Biol. 50 786–798

    Article  PubMed  CAS  Google Scholar 

  • Choi O, Kim J, Kim JG, Jeong Y, Moon JS, Park CS and Hwang I 2008 Pyrroloquinoline quinone is a plant growth promotion factor produced by Pseudomonas fluorescens B16. Plant Physiol. 146 657–668

    Google Scholar 

  • Chowanadisai W, Bauerly KA, Tchaparian E, Wong A, Cortopassi GA and Rucker RB 2010 Pyrroloquinoline quinone stimulates mitochondrial biogenesis through cAMP response element-binding protein phosphorylation and increased PGC-1alpha expression. J. Biol. Chem. 285 142–152

    Article  PubMed  CAS  Google Scholar 

  • de Werra P, Péchy-Taur M, Keel C and Maurhofer M 2009 Role of gluconic acid production in the regulation of biocontrol traits of Pseudomonas fluorescens CHA0. Appl. Environ. Microbiol. 75 4162–4174

    Article  PubMed  Google Scholar 

  • Duine H 1991 Quinoproteins enzymes containing the quinonoid cofactor pyrroloquinoline quinone, topaquinone or tryptophantryptophan quinine. Eur. J. Biochern. 2000 271–284

    Article  Google Scholar 

  • Duine JA 1999 The PQQ story. J. Biosci. Bioeng. 88 231–236

    Article  PubMed  CAS  Google Scholar 

  • Fetzner S and Steiner RA 2010 Cofactor-independent oxidases and oxygenases. Appl. Microbiol. Biotechnol. 86 791–804

    Article  PubMed  CAS  Google Scholar 

  • Goldstein AH 1986 Bacterial mineral phosphate solubilization Historical perspective and future prospects. Am. J. Alternat. Agric. 1 57–65

    Google Scholar 

  • Goldstein A, Lester T and Brown J 2003 Research on the metabolic engineering of the direct oxidation pathway for extraction of phosphate from ore has generated preliminary evidence for PQQ biosynthesis in Escherichia coli as well as a possible role for the highly conserved region of quinoprotein dehydrogenases. Biochem. Biophys. Acta. 1647 266–271

    PubMed  CAS  Google Scholar 

  • Goosen N, Horsman HP, Huinen RG and van de Putte P 1989 Acinetobacter calcoaceticus genes involved in biosynthesis of the coenzyme pyrrolo-quinoline-quinone nucleotide sequence and expression in Escherichia coli K-12. J. Bacteriol. 171 447–455

    PubMed  CAS  Google Scholar 

  • Goosen N, Huinen RG and van de Putte P 1992 A 24-amino-acid polypeptide is essential for the biosynthesis of the coenzyme pyrrolo-quinoline-quinone. J. Bacteriol. 174 1426–1427

    PubMed  CAS  Google Scholar 

  • Guo YB, Li J, Li L, Chen F, Wu W, Wang J and Wang H 2009 Mutations that disrupt either the pqq or the gdh gene of Rahnella aquatilis abolish the production of an antibacterial substance and result in reduced biological control of grapevine crown gall. Appl. Environ. Microbiol. 75 6792–803

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B and Gutteridge MC 1999 Free radicals in biology and medicine (Oxford: Oxford University Press) pp 105–350

    Google Scholar 

  • Han SH, Kim CH, Lee JH, Park JY, Cho SM, Park SK, Kim KY, Krishnan HB and Kim YC 2008 Inactivation of pqq genes of Enterobacter intermedium 60–2G reduces antifungal activity and induction of systemic resistance. FEMS Microbiol. Lett. 282 140–146

    Article  PubMed  CAS  Google Scholar 

  • Hara H, Hiramatsu H and Adachi T 2007 Pyrroloquinoline quinone is a potent neuroprotective nutrient against 6-hydroxydopamine-induced neurotoxicity. Neurochem. Res. 32 489–495

    Article  PubMed  CAS  Google Scholar 

  • He K, Nukada H, Urakami T and Murphy MP 2003 Antioxidant and prooxidant properties of pyrroloquinoline quinone (PQQ) implications for its function in biological systems. Biochem. Pharmacol. 65 67–74

    Article  PubMed  CAS  Google Scholar 

  • He B, Liu SQ and Li HH 2010 The roles of PI3K/Akt pathway in proliferation of Schwann cells promoted by pyrroloquinoline quinine. Zhonghua Zheng Xing Wai Ke Za Zhi 26 53–56

    PubMed  Google Scholar 

  • Hirakawa A, Shimizu K, Fukumitsu H and Furukawa S 2009 Pyrroloquinoline quinone attenuates iNOS gene expression in the injured spinal cord. Biochem. Biophys. Res. Commun. 378 308–312

    Article  PubMed  CAS  Google Scholar 

  • Hölscher T and Görisch H 2006 Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H. J. Bacteriol. 188 7668–7676

    Article  PubMed  Google Scholar 

  • Hölscher T, Schleyer U, Merfort M, Bringer-Meyer S, Görisch H and Sahm H 2009 Glucose oxidation and PQQ-dependent dehydrogenase in gluoconobacteri oxydans. J. Mol. Microbiol. Biotechnol. 16 6–13

    Article  PubMed  Google Scholar 

  • James DW Jr, and Gutterson NI 1986 Multiple antibiotics produced by Pseudomonas fluorescens HV37a and their differential regulation by glucose. Appl. Environ. Microbiol. 52 1183–1189

    PubMed  CAS  Google Scholar 

  • Junkefer C, Rhouck D, Britt BM, Sosnick TR and Hanners JL 1995 Biogenesis of pyrroloquinoline quinone from 3C-labeled tyrosine. Meth. Enzymol. 258 227–235

    Article  Google Scholar 

  • Katz E and Willner I 2003 A biofuel cell with electrochemically switchable and tunable power output. J. Am. Chem. Soc. 125 6803–6813

    Article  PubMed  CAS  Google Scholar 

  • Katz E, Lioubashevski O and Willner I 2005 Magnetic field effects on bioelectrocatalytic reactions of surface-confined enzyme systems enhanced performance of biofuel cells. J. Am. Chem. Soc. 127 3979–3988

    Article  PubMed  CAS  Google Scholar 

  • Khairnar NP, Misra HS and Apte SK 2003 Pyrroloquinoline-quinone synthesized in Escherichia coli by pyrroloquinoline-quinone synthase of Deinococcus radiodurans plays a role beyond mineral phosphate solubilization. Biochem. Biophys. Res. Commun. 312 303–308

    Article  PubMed  CAS  Google Scholar 

  • Khairnar NP, Kamble VA, Mangoli SH, Apte SK and Misra HS 2007 Involvement of a periplasmic protein kinase in DNA strand break repair and homologous recombination in Escherichia coli. Mol. Microbiol. 65 294–304

    Article  PubMed  CAS  Google Scholar 

  • Killgore J, Smidt C, Duich L, Romero-Chapman N, Tinker D, Reiser K, Melko M, Hyde D and Rucker RB 1989 Nutritional importance of pyrroloquinoline quinone. Science 245 850–852

    Article  PubMed  CAS  Google Scholar 

  • Kim KY, Jordan D and Krishnan HB 1998 Expression of genes from Rahnella aquatilis that are necessary for mineral phosphate solubilization in Escherichia coli. FEMS Microbiol. Lett. 159 121–127

    Google Scholar 

  • Kim CH, Han SH, Kim KY, Cho BH, Kim YH, Koo BS and Kim YC 2003 Cloning and expression of pyrroloquinoline quinone (PQQ) genes from a phosphate-solubilizing bacterium Enterobacter intermedium. Curr. Microbiol. 47 457–461

    Google Scholar 

  • Kim J, Harada R, Kobayashi M, Kobayashi N and Sode K 2010 The inhibitory effect of pyrroloquinoline quinone on the amyloid formation and cytotoxicity of truncated alpha-synuclein. Mol. Neurodegener. 5 20

    Article  PubMed  Google Scholar 

  • Kim J, Kobayashi M, Fukuda M, Ogasawara D, Kobayashi N, Han S, Nakamura C, Inada M, Miyaura C, Ikebukuro K and Sode K 2010 Pyrroloquinoline quinone inhibits the fibrillation of amyloid proteins. Prion 4 26–31

    Article  PubMed  CAS  Google Scholar 

  • Kulys J, Tetianec L and Bratkovskaja I 2010 Pyrroloquinoline quinone-dependent carbohydrate dehydrogenase Activity enhancement and the role of artificial electron acceptors. Biotechnol. J. 5 822–828

    Article  PubMed  CAS  Google Scholar 

  • Kumazawa T, Sato K, Seno H, Ishii A and Suzuki O 1995 Levels of pyrroloquinoline quinone in various foods. Biochem. J. 307 331–333

    Google Scholar 

  • Kumazawa T, Hiwasa T, Takiguchi M, Suzuki O and Sato K 2007 Activation of ras signaling pathways by pyrroloquinoline quinone in NIH3T3 mouse fibroblasts. Int. J. Mol. Med. 19 765–770

    Google Scholar 

  • Kurtinaitienė B, Razumienė J, Gurevičienė V, Melvydas V, Marcinkevičienė L, Bachmatova I, Meškys R and Laurinavičius V 2010 Application of oxygen-independent biosensor for testing yeast fermentation capacity. Biosens. Bioelectron. 26 766–771

    Article  PubMed  Google Scholar 

  • Liu ST, Lee LY, Tai CY, Hung CH, Chang YS, Wolfram JH, Rogers R and Goldstein AH 1992 Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101 nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinine. J. Bacteriol. 174 5814–5819

    Google Scholar 

  • Liu S, Li H, Qu, Yang J, Peng H, Wu K, Liu Y and Yang J 2005 Enhanced rat sciatic nerve regeneration through silicon tubes filled with pyrroloquinoline quinine. Microsurgery 25 329–337

    Article  PubMed  Google Scholar 

  • Matsushita K, Toyama H, Yamada M and Adachi O 2002 Quinoproteins structure, function, and biotechnological applications. Appl. Microbiol. Biotechnol. 58 13–22

    Article  PubMed  CAS  Google Scholar 

  • McIntire WS 1994 Quinoproteins. FASEB J. 8 513–521

    PubMed  CAS  Google Scholar 

  • Meulenberg JJ, Sellink E, Riegman NH and Postma PW 1992 Nucleotide sequence and structure of the Klebsiella pneumoniae operon. Mol. Gen. Genet. 232 284–294

    PubMed  CAS  Google Scholar 

  • Misra HS, Khairnar NP, Atanu B, Priyadarshini KI, Mohan H and Apte SK 2004 Pyrroloquinoline-quinone a reactive oxygen species scavenger in bacteria. FEBS Lett. 578 26–30

    Article  PubMed  CAS  Google Scholar 

  • Mitchell AE, Jones AD, Mercer RS and Rucker RB 1999 Characterization of pyrroloquinoline quinone amino acid derivatives by electrospray ionization mass spectrometry and detection in human milk. Anal. Biochem. 269 317–325

    Article  PubMed  CAS  Google Scholar 

  • Monks TJ and Jones DC 2002 The metabolism and toxicity of quinones, quinonimines, quinone methides, and quinone-thioethers. Curr. Drug Metab. 3 425–438

    Article  PubMed  CAS  Google Scholar 

  • Noji N, Nakamura T, Kitahata N, Taguchi K, Kudo T, Yoshida S, Tsujimoto M, Sugiyama T and Asami T 2007 Simple and sensitive method for pyrroloquinoline quinone (PQQ) analysis in various foods using liquid chromatography/electrospray-ionization tandem mass spectrometry. J. Agric. Food Chem. 55 7258–7263

    Article  PubMed  CAS  Google Scholar 

  • Nunome K, Miyazaki S, Nakano M, Iguchi-Ariga S and Ariga H 2008 Pyrroloquinoline quinone prevents oxidative stress-induced neuronal death probably through changes in oxidative status of DJ-1. Biol. Pharm. Bull. 31 1321–1326

    Google Scholar 

  • Rajpurohit YS, Gopalakrishnan R, and Misra HS 2008 Involvement of a protein kinase activity inducer in DNA double strand break repair and radioresistance of Deinococcus radiodurans. J. Bacteriol. 190 3948–3954

    Article  PubMed  CAS  Google Scholar 

  • Rajpurohit YS and Misra HS 2010 Characterization of a DNA damage inducible membrane protein kinase from Deinococcus radiodurans and its role in bacterial radioresistance and DNA strand break repair. Mol. Microbiol. 77 1470–1482

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez H and Fraga R 1999 Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17 319–339

    Article  PubMed  CAS  Google Scholar 

  • Rolhion N, Barnich N, Claret L and Darfeuille-Michaud A 2005 Strong decrease in invasive ability and outer membrane vesicle release in Crohn’s disease-associated adherent-invasive Escherichia coli strain LF82 with the yfgL gene deleted. J. Bacteriol. 187 2286–2296

    Article  PubMed  CAS  Google Scholar 

  • Rucker R, Chowanadisai W and Nakano M 2009 Potential Physiological Importance of pyrroloquinoline quinone. Altern. Med. Rev. 14 269–277

    Google Scholar 

  • Rudolf M and Kroneck PM 2005 The nitrogen cycle its biology. Met. Ions Biol. Syst. 43 75–103

    PubMed  CAS  Google Scholar 

  • Salisbury SA, Forrest HS, Cruse WB and Kennard O 1979 A novel coenzyme from bacterial primary alcohol dehydrogenases. Nature 280 843–844

    Article  PubMed  CAS  Google Scholar 

  • Sashidhar B and Podile AR 2010 Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase. J. Appl. Microbiol. 109 1–12

    PubMed  CAS  Google Scholar 

  • Sato K and Toriyama M 2009 Effect of pyrroloquinoline quinone (PQQ) on melanogenic protein expression in murine B16 melanoma. J. Dermatol. Sci. 53 140–145

    Article  PubMed  CAS  Google Scholar 

  • Schnider U, Keel C, Voisard C, Defago G and Haas D 1995 Tn5-directed cloning of p genes from Pseudomonas fluorescens CHA0 mutational inactivation of the genes results in overproduction of the antibiotic pyoluteorin. Appl. Environ. Microbiol. 61 3856–3864

    PubMed  CAS  Google Scholar 

  • Shankar B, Pandey R, Amin P, Misra HS and Sainis KB 2010 Role of glutathione in augmenting the anticancer activity of pyrroloquinoline quinone (PQQ). Redox Rep. 15 146–154

    Article  PubMed  CAS  Google Scholar 

  • Shen D and Meyerhoff ME 2009 Pyrroloquinoline quinone-doped polymeric nanospheres as sensitive tracer for binding assays. Anal. Chem. 81 1564–1569

    Article  PubMed  CAS  Google Scholar 

  • Shrivastava M, Rajpurohit YS, Misra HS and D’Souza SF 2010 Survival of phosphate-solubilizing bacteria against DNA damaging agents. Can. J. Microbiol. 56 822–830

    Article  PubMed  CAS  Google Scholar 

  • Smidt CR, Unkefer CJ, Houck DR and Rucker RB 1991 Intestinal absorption and tissue distribution of [14C] pyrroloquinoline quinone in mice. Proc. Soc. Exp. Biol. Med. 197 27–31

    PubMed  CAS  Google Scholar 

  • Steinberg FM, Gershwin ME and Rucker RB 1994 Dietary pyrroloquinoline quinone growth and immune response in BALB/c mice. J. Nutr. 124 744–753

    PubMed  CAS  Google Scholar 

  • Steinberg F, Stites TE, Anderson P, Storms D, Chan I, Eghbali S and Rucker R 2003 Pyrroloquinoline quinone improves growth and reproductive performance in mice fed chemically defined diets. Exp. Biol. Med. (Maywood) 228 160–166

    CAS  Google Scholar 

  • Stites TE, Mitchell AE and Rucker RB 2000 Physiological importance of quinoenzymes and the O-quinone family of cofactors. J. Nutr. 130 719–727

    Google Scholar 

  • Stites T, Storms D, Bauerly K, Mah J, Harris C, Fascetti A, Rogers Q, Tchaparian E, Satre M and Rucker RB 2006 Pyrroloquinoline quinone modulates mitochondrial quantity and function in mice. J. Nutr. 136 390–396

    Google Scholar 

  • Tanne C, Gobel G and Lisdat F 2010 Development of a (PQQ)-GDH-anode based on MWCNT-modified gold and its application in a glucose/O(2)-biofuel cell. Biosens. Bioelectron. 26 530–535

    Article  PubMed  CAS  Google Scholar 

  • Tchaparian E, Marshal L, Cutler G., Bauerly K, Chowanadisai W, Satre M, Harris C and Rucker RB 2010 Identification of transcriptional networks responding to pyrroloquinoline quinone dietary supplementation and their influence on thioredoxin expression, and the JAK/STAT and MAPK pathways. Biochem. J. 429 515–526

    Article  PubMed  CAS  Google Scholar 

  • Toyama H, Chistoserdova L and Lidstrom ME 1997 Sequence analysis of pqq genes required for biosynthesis of pyrroloquinoline quinone in Methylobacterium extorquens AM1 and the purification of a biosynthetic intermediate. Microbiology 143 595–602

    Article  PubMed  CAS  Google Scholar 

  • Treu BL and Minteer SD 2008 Isolation and purification of PQQ-dependent lactate dehydrogenase from Gluconobacter and use for direct electron transfer at carbon and gold electrodes. Bioelectrochemistry 74 73–77

    Article  PubMed  CAS  Google Scholar 

  • Treu BL, Arechederra R and Minteer SD 2010 Bioelectrocatalysis of ethanol via PQQ-dependent dehydrogenases utilizing carbon nanomaterial supports. J. Nanosci. Nanotechnol. 9 2374–2380

    Article  Google Scholar 

  • Urakami T, Yashima K, Kobayashi H, Yoshida A and Ito-Yoshida C 1992 Production of pyrroloquinoline quinone by using methanolutilizing bacteria. Appl. Environ. Microbiol. 58 3970–3976

    PubMed  CAS  Google Scholar 

  • Wang L, Jil C, Xu Y, Xu J, Dai J, Wu Q, Wu M, Zou X, Sun L, Gu S et al. 2005 Cloning and characterization of a novel human homolog of mouse U26, a putative PQQ-dependent AAS dehydrogenase. Mol. Biol. Rep. 32 4753

    Google Scholar 

  • Westerling J, Frank J and Duine JA 1979 The prosthetic group of methanol dehydrogenase from Hyphomicrobium X electron spin resonance evidence for a quinone structure. Biochem. Biophys. Res. Commun. 87 719–24

    Article  PubMed  CAS  Google Scholar 

  • Willner I, Baron R and Willner B 2007 Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics. Biosens. Bioelectron. 22 1841–1852

    Article  PubMed  CAS  Google Scholar 

  • Wu T, Malinverni J, Ruiz N, Kim S, Silhavy TJ and Kahne D 2005 Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell 121 235–245

    Article  PubMed  CAS  Google Scholar 

  • Yakushi T and Matsushita K 2010 Alcohol dehydrogenase of acetic acid bacteria Structure, mode of action, and applications in biotechnology. Appl. Microbiol. Biotechnol. 86 1257–1265

    Article  PubMed  CAS  Google Scholar 

  • Yang XP, Zhong GE, Lin JP, Mao DB and Wei DZ 2010 Pyrroloquinoline quinone biosynthesis in Escherichia coli through expression of the Gluconobacter oxydans pqqABCDE gene cluster. J. Ind. Microbiol. Biotechnol. 37 575–580

    Article  PubMed  CAS  Google Scholar 

  • Yu EH, Himuro Y, Takai M and Ishihara K 2010 Feasibility study of introducing redox property by modification of PMBN polymer for biofuel cell applications. Appl. Biochem. Biotechnol. 160 1094–1101

    Article  PubMed  CAS  Google Scholar 

  • Yuhashi N, Tomiyama M, Okuda J, Igarashi S, Ikebukuro K and Sode K 2005 Development of a novel glucose enzyme fuel cell system employing protein engineered PQQ glucose dehydrogenase. Biosens. Bioelectron. 20 2145–2150

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y and Rosenberg PA 2002 The essential nutrient pyrroloquinoline quinone may act as a neuroprotectant by suppressing peroxynitrite formation. Eur. J. Neurosci. 16 1015–1024

    Article  PubMed  Google Scholar 

  • Zhang Y, Feustel PJ and Kimelberg HK 2006 Neuroprotection by pyrroloquinoline quinone (PQQ) in reversible middle cerebral artery occlusion in the adult rat. Brain Res. 1094 200–206

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Xu Y, Sun J, Li X, Wang L and Jin L 2009 Protection of pyrroloquinoline quinone against methylmercuryinduced neurotoxicity via reducing oxidative stress. Free Radical Res. 43 224–233

    Google Scholar 

  • Zhu BQ, Simonis U, Cecchini G, Zhou HZ, Li L, Teerlink JR and Karliner JS 2006 Comparison of pyrroloquinoline quinone and/or metoprolol on myocardial infarct size and mitochondrial damage in a rat model of ischemia/reperfusion injury. J. Cardiovasc. Pharmacol. Ther. 11 119–128

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I am grateful Dr SK Apte for his support and appreciation for carrying out research on this novel molecule. Dr (Mrs) Shruti Desai, Mrs Swathi Kota and Ms Kruti Mehta for critical reading of the manuscript and Prof YC Kim, Prof F Lisdat and Prof I Hwang for granting permission to reproduce the respective figures from their published papers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H S Misra.

Additional information

Corresponding editor: Sudha Bhattacharya

[Misra HS, Rajpurohit YS and Khairnar NP 2012 Pyrroloquinoline-quinone and its versatile roles in biological processes. J. Biosci. 37 1–13] DOI

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misra, H.S., Rajpurohit, Y.S. & Khairnar, N.P. Pyrroloquinoline-quinone and its versatile roles in biological processes. J Biosci 37, 313–325 (2012). https://doi.org/10.1007/s12038-012-9195-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-012-9195-5

Keywords

Navigation