Skip to main content
Log in

Pleiotropic consequences of misexpression of the developmentally active and stress-inducible non-coding hsrω gene in Drosophila

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

The non-coding hsrω gene of Drosophila melanogaster is expressed in nearly all cell types and developmental stages. However, in the absence of conventional mutant alleles of this gene, its developmental functions remain largely unknown. In the present study, we used a variety of GAL4 drivers to overexpress or ablate this gene’s transcripts in specific tissues and examined the developmental consequences thereof. Our results show that a balanced expression of these non-coding transcripts is critical for survival and normal development in all the tissue types tested, since any change in cellular levels of these transcripts in a given cell type generally has detrimental effects, with extreme cases resulting in organismal lethality, although in a few cases the misexpression of these transcripts also suppresses the mutant phenotype due to other genetic conditions. Evidence is also presented for existence of a new spliced variant of the hsrω-n nuclear transcript. Following the RNAi-mediated down-regulation of hsrω transcripts, the omega speckles disappear so that the nucleoplasmic hnRNPs get diffusely distributed, while up-regulation of these transcripts results in greater sequestration of these proteins into omega speckle clusters; either of these conditions would affect activities of the hnRNPs and other hsrω-RNA interacting proteins, which is likely to have cascading consequences. The present findings, together with our earlier observations on effects of altered levels of the hsrω transcripts on induced apoptosis and expanded polyQ-mediated neurodegeneration, further confirm that ncRNA species like the hsrω, far from being evolutionary hangovers, provide critical information for important functions in normal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

AP or A/P:

anterior-posterior

DIG:

digoxigenin

EP:

enhancer promoter

FRISH:

fluorescent RNA:RNA in situ hybridization

hnRNP:

heterogeneous nuclear RNA-binding protein

HP1:

heterochromatin protein 1

IGC:

inter-chromatin granule cluster

ncRNA:

non-coding RNA

ORF:

open reading frame

polyQ:

polyglutamine

RISC:

RNA-induced silencing complex

RNAi:

RNA interference

References

  • Bendena WG, Fini ME, Garbe JC, Kidder GM, Lakhotia SC and Pardue ML 1989 hsrω: A different sort of heat shock locus; in Stress-induced proteins (eds) ML Pardue, J Ferimisco and S Lindquist (Alan R Liss, Inc) pp. 3–14

  • Bendena WG, Ayme-Southgate A, Garbe JC and Pardue ML 1991 Expression of heat-shock locus hsrω in non-stressed cells during development in Drosophila melanogaster. Dev. Biol. 144 65–77

    Article  PubMed  CAS  Google Scholar 

  • Brand AH and Perrimon N 1993 Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118 401–415

    PubMed  CAS  Google Scholar 

  • Calleja M, Moreno E, Pelaz S and Morata G 1996 Visualization of gene expression in living adult Drosophila. Science 274 252–255

    Article  PubMed  CAS  Google Scholar 

  • Ekengren S, Tryselius Y, Dushay MS, Liu G, Steiner H and Hultmark D 2001 A humoral stress response in Drosophila. Curr. Biol. 11 714–718

    Article  PubMed  CAS  Google Scholar 

  • Fini ME, Bendena WG and Pardue ML 1989 Unusual behavior of the cytoplasmic transcript of hsromega: an abundant, stress-inducible RNA that is translated but yields no detectable protein product J. Cell Biol. 108 2045–2057

    Article  PubMed  CAS  Google Scholar 

  • Garbe JC and Pardue ML 1986 Heat shock locus 93D of Drosophila melanogaster: a spliced RNA most strongly conserved in the intron sequence. Proc. Natl. Acad. Sci. USA 83 1812–1816

    Article  PubMed  CAS  Google Scholar 

  • Garbe JC, Bendena WG, Alfano M and Pardue ML 1986 A Drosophila heat shock locus with a rapidly diverging sequence but a conserved structure. J. Biol. Chem. 261 16889–16894

    PubMed  CAS  Google Scholar 

  • Grimaud C, Bantignies F, Pal-Bhadra M, Ghana P, Bhadra U and Cavalli G 2006 RNAi components are required for nuclear clustering of Polycomb group response elements. Cell 124 957–971

    Article  PubMed  CAS  Google Scholar 

  • Gurudatta BV, Shashidhara LS and Parnaik VK 2010 Lamin C and chromatin organization in Drosophila. J. Genet. 89 37–49

    Article  PubMed  CAS  Google Scholar 

  • Han SP, Tang YH and Smith R 2010 Functional diversity of the hnRNPs: past, present and perspectives. Biochem. J. 430 379–392

    Article  PubMed  CAS  Google Scholar 

  • Hay BA, Wolff T and Rubin GM 1994 Expression of baculovirus P35 prevents cell death in Drosophila. Development 120 2121–2129

    PubMed  CAS  Google Scholar 

  • Hinz U, Giebel B and Campos-Ortega JA 1994 The basic-helix-loop-helix domain of Drosophila lethal of scute protein is sufficient for proneural function and activates neurogenic genes. Cell 76 77–87

    Article  PubMed  CAS  Google Scholar 

  • Hovemann BT, Waldorf U and Ryseck RP 1986 Heat shock locus of 93D of Drosophila melanogaster: An RNA with limiting coding capacity accumulates precursor transcripts after heat shock. Mol. Gen. Genet. 204 334–340

    Article  CAS  Google Scholar 

  • Hrdlicka L, Gibson M, Kiger A, Micchelli C, Schober M, Schöck F and Perrimon N 2002 Analysis of twenty-four Gal4 lines in Drosophila melanogaster. Genesis 34 51–57

    Article  PubMed  CAS  Google Scholar 

  • Jagatheesan G, Thanumalayan S, Muralikrishna B, Rangaraj N, Karande AA and Parnaik VK 1999 Colocalization of intranuclear lamin foci with RNA splicing factors. J. Cell Sci. 112 4651–4661

    PubMed  CAS  Google Scholar 

  • Ji Y and Tulin AV 2009 Poly(ADP-ribosyl)ation of heterogeneous nuclear ribonucleoproteins modulates splicing. Nuc. Acids Res. 37 3501–3513

    Article  CAS  Google Scholar 

  • Jolly C and Lakhotia SC 2006 Human sat III and Drosophila hsrω transcripts: a common paradigm for regulation of nuclear RNA processing in stressed cells. Nuc. Acids Res. 34 5508–5514

    Article  CAS  Google Scholar 

  • Kind J and van Steensel B 2010 Genome-nuclear lamina interactions and gene regulation, Curr. Opin. Cell Biol. 22 320–325

    Article  PubMed  CAS  Google Scholar 

  • Kumaran RI, Muralikrishna B and Parnaik VK 2002 Lamin A/C speckles mediate spatial organization of splicing factor compartments and RNA polymerase II transcription. J. Cell Biol. 159 783–793

    Article  PubMed  CAS  Google Scholar 

  • Lakhotia SC 2003 The non-coding developmentally active and stress-inducible hsrω gene of Drosophila melanogaster integrates post-transcriptional processing of other nuclear transcripts; in Nc RNAs: Molecular biology and molecular medicine (eds) J Barciszewski and VA Erdmann (New York: Kluwer Academic/Plenum Publishers) pp. 203–221

    Google Scholar 

  • Lakhotia SC, Mallik M, Singh AK and Ray M 2011 The large non-coding hsrω-n transcripts are essential for thermotolerance and remobilization of hnRNPs, HP1 and RNA polymerase II during recovery from heat shock in Drosophila. Chromosoma under revision

  • Lakhotia SC and Mukherjee T 1980 Specific activation of puff 93D of Drosophila melanogaster by benzamide and the effect of benzamide treatment on the heat shock induced puffing activity. Chromosoma 81 125–136

    Article  PubMed  CAS  Google Scholar 

  • Lakhotia SC and Mukherjee T 1982 Absence of novel translational products in relation to induced activity of the 93D puff in D. melanogaster. Chromosoma 85 369–374

    Article  PubMed  CAS  Google Scholar 

  • Lakhotia SC and Mukherjee T 1984 Specific induction of the 93D puff in polytene nuclei of Drosophila melanogaster by colchicines. Indian J. Exp. Biol. 22 67–70

    PubMed  CAS  Google Scholar 

  • Lakhotia SC, Rajendra TK and Prasanth KV 2001 Developmental regulation and complex organization of the promoter of the non-coding hsrω gene of Drosophila melanogaster. J. Biosci. 26 25–38

  • Lakhotia SC and Ray P 1996 hsp83 mutation is a dominant enhancer of lethality associated with absence of the non-protein coding hsrω locus in Drosophila melanogaster. J. Biosci. 21 207–219

    Article  CAS  Google Scholar 

  • Lakhotia SC, Ray P, Rajendra TK and Prasanth KV 1999 The non-coding transcripts of hsrω gene in Drosophila: Do they regulate trafficking and availability of nuclear RNA-processing factors? Curr. Sci. 77 553–563

    Google Scholar 

  • Lakhotia SC and Sharma A 1995 RNA metabolism in situ at the 93D heat shock locus in polytene nuclei of Drosophila melanogaster after various treatments. Chromosome Res. 3 151–161

    Article  PubMed  CAS  Google Scholar 

  • Lakhotia SC and Sharma A 1996 The 93D (hsrω) locus of Drosophila: non-coding gene with house-keeping functions. Genetica 97 339–348

    Article  PubMed  CAS  Google Scholar 

  • Lakhotia SC and Tapadia MG 1998 Genetic mapping of the amide response element/s of the hsrω locus of Drosophila melanogaster. Chromosoma 107 127–135

    Article  PubMed  CAS  Google Scholar 

  • Lin DM and Goodman CS 1994 Ectopic and increased expression of Fasciclin II alters motoneuron growth cone guidance. Neuron 13 507–523

    Article  PubMed  CAS  Google Scholar 

  • Mallik M and Lakhotia SC 2009a The developmentally active and stress-inducible non-coding hsrω gene is a novel regulator of apoptosis in Drosophila. Genetics 183 831–852

    Article  PubMed  CAS  Google Scholar 

  • Mallik M and Lakhotia SC 2009b RNAi for the large non-coding hsrω transcripts suppresses polyglutamine pathogenesis in Drosophila models. RNA Biol. 6 464–478

    Article  PubMed  CAS  Google Scholar 

  • Mallik M and Lakhotia SC 2010 Improved activities of CREB-binding protein, heterogenous nuclear ribonucleoproteins and proteasome following down regulation of non-coding hsrω transcripts help suppress polyQ pathogenesis in fly models. Genetics 184 927–945

    Article  PubMed  CAS  Google Scholar 

  • Manseau L, Baradaran A, Brower D, Budhu A, Elefant F, Phan H, Philp AV, Yang M, et al. 1997 GAL4 enhancer traps expressed in the embryo, larval brain, imaginal discs, and ovary of Drosophila. Dev. Dyn. 209 310–322

    Article  PubMed  CAS  Google Scholar 

  • Mattick JS, Taft RJ and Faulkner GJ 2010 A global view of genomic information – moving beyond the gene and the master regulator. Trends Genet. 26 21–28

    Article  PubMed  CAS  Google Scholar 

  • Mohler J and Pardue ML 1984 Mutational analysis of the region surrounding the 93D heat shock locus of Drosophila melanogaster. Genetics 106 249–265

    PubMed  CAS  Google Scholar 

  • Mukherjee T and Lakhotia SC 1979 3H-uridine incorporation in the puff 93D and in chromocentric heterochromatin of heat shocked salivary glands of Drosophila melanogaster. Chromosoma 74 75–82

    Article  PubMed  CAS  Google Scholar 

  • Mutsuddi M and Lakhotia SC 1995 Spatial expression of the hsrω (93D) gene in different tissues of Drosophila melanogaster and identification of promoter elements controlling its developmental expression. Dev. Genet. 17 303–311

    Article  PubMed  CAS  Google Scholar 

  • Onorati MC, Lazzaro S, Mallik M, Ingrassia AM R, Singh AK, Chaturvedi D, Lakhotia SC and Corona DFV 2011 The ISWI chromatin remodeler organizes the hsrω ncRNA-containing omega opeckle nuclear compartments. PLOS Genet. In press

  • Pal-Bhadra M, Leibovitch BA, Gandhi SG, Rao M, Bhadra U, Birchler JA and Elgin SC 2004 Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303 669–672

    Article  PubMed  CAS  Google Scholar 

  • Penalva LO and Sanchez L 2003 RNA-binding protein sex-lethal (Sxl) and control of Drosophila sex determination and dosage compensation. Microbiol. Mol. Biol. Rev. 67 343–359

    Article  PubMed  CAS  Google Scholar 

  • Prasanth KV, Rajendra TK, Lal AK and Lakhotia SC 2000 Omega speckles - a novel class of nuclear speckles containing hnRNPs associated with non-coding hsrω RNA in Drosophila. J. Cell Sci. 113 3485–3497

    PubMed  CAS  Google Scholar 

  • Robb GB, Brown KM, Khurana J and Rana TM 2005 Specific and potent RNAi in the nucleus of human cells. Nat. Struct. Mol. Biol. 12 133–137

    Article  PubMed  CAS  Google Scholar 

  • Rorth P 1996 A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc. Natl. Acad. Sci. USA 93 12418–12422

    Article  PubMed  CAS  Google Scholar 

  • Ryseck RP, Walldorf U and Hovemann B 1985 Two major RNA products are transcribed from heat-shock locus 93D of Drosophila melanogaster. Chromosoma 93 17–20

    Article  PubMed  CAS  Google Scholar 

  • Samuels ME, Bopp D, Colvin RA, Roscigno RF, Garcia-Blanco MA and Schedl P 1994 RNA binding by Sxl proteins in vitro and in vivo. Mol. Cell Biol. 14 4975–4990

    PubMed  CAS  Google Scholar 

  • Saumweber H, Symmons P, Kabisch R, Will H and Bonhoeffer F 1980 Monoclonal antibodies against chromosomal proteins of Drosophila melanogaster: establishment of antibody producing cell lines and partial characterization of corresponding antigens. Chromosoma 80 253–275

    Article  PubMed  CAS  Google Scholar 

  • Schwank G and Basler K 2010 Regulation of organ growth by morphogen gradients. Cold Spring Harb. Perspect. Biol. 2 a001669

    Article  PubMed  Google Scholar 

  • Spector D 1993 Macromolecular domains within the cell nucleus. Am. Rev. Cell Biol. 9 265–315

    Article  CAS  Google Scholar 

  • Staehling-Hampton K, Jackson PD, Clark MJ, Brand AH and Hoffmann FM 1994 Specificity of bone morphogenetic protein-related factors: cell fate and gene expression changes in Drosophila embryos induced by decapentaplegic but not 60A. Cell Growth Differ. 5 585–593

    PubMed  CAS  Google Scholar 

  • Stuurman N, Delbecque JP, Callaerts P and Aebi U 1999 Ectopic overexpression of Drosophila lamin C is stage-specific lethal. Exp. Cell Res. 248 350–357

    Article  PubMed  CAS  Google Scholar 

  • Tapadia M and Lakhotia SC 1997 Specific induction of the hsrω locus of Drosophila melanogaster by amides. Chromosome Res. 5 1–4

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to the Bloomington Stock Center for EP3037, dpp-GAL4, ptc-GAL4, P{GawB}ap md544 , P{GawB}l(2)C805 C805, P{w[+mW.hs] = GawB}c825, hs-GAL4 t , Act5C-GAL4, elav-GAL4 and GMR-GAL4 fly stocks and to Dr VK Parnaik for providing the UAS-lamC flies. We gratefully thank Dr H Saumweber for generously providing the P11 antibody. This work was supported, in part, by the Shyama Prasad Mukherjee Fellowship from the Council of Scientific and Industrial Research, India, to MM and research support from the Department of Science and Technology, India, to SCL. The confocal microscope facility is also funded by the Department of Science and Technology, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash C Lakhotia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallik, M., Lakhotia, S.C. Pleiotropic consequences of misexpression of the developmentally active and stress-inducible non-coding hsrω gene in Drosophila . J Biosci 36, 265–280 (2011). https://doi.org/10.1007/s12038-011-9061-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-011-9061-x

Keywords

Navigation