Skip to main content

Advertisement

Log in

PPAR-γ Is Critical for HDAC3-Mediated Control of Oligodendrocyte Progenitor Cell Proliferation and Differentiation after Focal Demyelination

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Disruption of remyelination contributes to neurodegeneration and cognitive impairment in chronically disabled patients. Valproic acid (VPA) inhibits histone deacetylase (HDAC) function and probably promotes oligodendrocyte progenitor cell (OPC) proliferation and differentiation; however, the relevant molecular mechanisms remain unknown. Here, focal demyelinating lesions (FDLs) were generated in mice by two-point stereotactic injection of lysophosphatidylcholine (LPC) into the corpus callosum. Cognitive functions, sensorimotor abilities and histopathological changes were assessed for up to 28 days post-injury with or without VPA treatment. Primary OPCs were harvested and used to study the effect of VPA on OPC differentiation under inflammatory conditions. VPA dose-dependently attenuated learning and memory deficits and robustly protected white matter after FDL induction, as demonstrated by reductions in SMI-32 and increases in myelin basic protein staining. VPA also promoted OPC proliferation and differentiation and increased subsequent remyelination efficiency by day 28 post-FDL induction. VPA treatment did not affect HDAC1, HDAC2 or HDAC8 expression but reduced HDAC3 protein levels. In vitro, VPA improved the survival of mouse OPCs and promoted their differentiation into oligodendrocytes following lipopolysaccharide (LPS) stimulation. LPS caused OPCs to overexpress HDAC3, which translocated from the cytoplasm into the nucleus, where it directly interacted with the nuclear transcription factor PPAR-γ and negatively regulated PPAR-γ expression. VPA decreased the expression of HDAC3 and promoted remyelination and functional neurological recovery after FDL. These findings may support the use of strategies modulating HDAC3-mediated regulation of protein acetylation for the treatment of demyelination-related cognitive dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All original data and materials are available upon request.

References

  1. Shi H, Hu X, Leak RK, Shi Y, An C, Suenaga J, Chen J, Gao Y (2015) Demyelination as a rational therapeutic target for ischemic or traumatic brain injury. Exp Neurol 272:17–25. https://doi.org/10.1016/j.expneurol.2015.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yazdi A, Baharvand H, Javan M (2015) Enhanced remyelination following lysolecithin-induced demyelination in mice under treatment with fingolimod (FTY720). Neuroscience 311:34–44. https://doi.org/10.1016/j.neuroscience.2015.10.013

    Article  CAS  PubMed  Google Scholar 

  3. Serra-de-Oliveira N, Boilesen SN, Prado de Franca Carvalho C, LeSueur-Maluf L, Zollner Rde L, Spadari RC, Medalha CC, Monteiro de Castro G (2015) Behavioural changes observed in demyelination model shares similarities with white matter abnormalities in humans. Behav Brain Res 287:265–275. https://doi.org/10.1016/j.bbr.2015.03.038

    Article  CAS  PubMed  Google Scholar 

  4. Kim S, Chung AY, Na JE, Lee SJ, Jeong SH, Kim E, Sun W, Rhyu IJ et al (2019) Myelin degeneration induced by mutant superoxide dismutase 1 accumulation promotes amyotrophic lateral sclerosis. Glia 67(10):1910–1921. https://doi.org/10.1002/glia.23669

    Article  PubMed  Google Scholar 

  5. Nave KA (2010) Myelination and support of axonal integrity by glia. Nature 468(7321):244–252. https://doi.org/10.1038/nature09614

    Article  CAS  PubMed  Google Scholar 

  6. Li X, Zhang Y, Yan Y, Ciric B, Ma CG, Gran B, Curtis M, Rostami A et al (2016) Neural stem cells engineered to express three therapeutic factors mediate recovery from chronic stage CNS autoimmunity. Molecular therapy : the journal of the American Society of Gene Therapy 24(8):1456–1469. https://doi.org/10.1038/mt.2016.104

    Article  CAS  Google Scholar 

  7. Bennett IJ, Madden DJ (2014) Disconnected aging: cerebral white matter integrity and age-related differences in cognition. Neuroscience 276:187–205. https://doi.org/10.1016/j.neuroscience.2013.11.026

    Article  CAS  PubMed  Google Scholar 

  8. Langley B, Gensert JM, Beal MF, Ratan RR (2005) Remodeling chromatin and stress resistance in the central nervous system: histone deacetylase inhibitors as novel and broadly effective neuroprotective agents. Current drug targets CNS and neurological disorders 4(1):41–50

    CAS  PubMed  Google Scholar 

  9. Yang XJ, Seto E (2007) HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 26(37):5310–5318. https://doi.org/10.1038/sj.onc.1210599

    Article  CAS  PubMed  Google Scholar 

  10. Baltan S (2012) Histone deacetylase inhibitors preserve function in aging axons. J Neurochem 123(Suppl 2):108–115. https://doi.org/10.1111/j.1471-4159.2012.07949.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shein NA, Grigoriadis N, Alexandrovich AG, Simeonidou C, Lourbopoulos A, Polyzoidou E, Trembovler V, Mascagni P et al (2009) Histone deacetylase inhibitor ITF2357 is neuroprotective, improves functional recovery, and induces glial apoptosis following experimental traumatic brain injury. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 23(12):4266–4275. https://doi.org/10.1096/fj.09-134700

    Article  CAS  Google Scholar 

  12. Baltan S, Morrison RS, Murphy SP (2013) Novel protective effects of histone deacetylase inhibition on stroke and white matter ischemic injury. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics 10(4):798–807. https://doi.org/10.1007/s13311-013-0201-x

    Article  CAS  Google Scholar 

  13. Kim HJ, Chuang DM (2014) HDAC inhibitors mitigate ischemia-induced oligodendrocyte damage: potential roles of oligodendrogenesis, VEGF, and anti-inflammation. Am J Transl Res 6(3):206–223

    PubMed  PubMed Central  Google Scholar 

  14. Jeong SG, Ohn T, Kim SH, Cho GW (2013) Valproic acid promotes neuronal differentiation by induction of neuroprogenitors in human bone-marrow mesenchymal stromal cells. Neurosci Lett 554:22–27. https://doi.org/10.1016/j.neulet.2013.08.059

    Article  CAS  PubMed  Google Scholar 

  15. Tai YT, Lee WY, Lee FP, Lin TJ, Shih CL, Wang JY, Chiu WT, Hung KS (2014) Low dose of valproate improves motor function after traumatic brain injury. Biomed Res Int 2014:980657–980658. https://doi.org/10.1155/2014/980657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dash PK, Orsi SA, Zhang M, Grill RJ, Pati S, Zhao J, Moore AN (2010) Valproate administered after traumatic brain injury provides neuroprotection and improves cognitive function in rats. PLoS One 5(6):e11383. https://doi.org/10.1371/journal.pone.0011383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sandvig I, Gadjanski I, Vlaski-Lafarge M, Buzanska L, Loncaric D, Sarnowska A, Rodriguez L, Sandvig A et al (2017) Strategies to enhance implantation and survival of stem cells after their injection in ischemic neural tissue. Stem Cells Dev 26(8):554–565. https://doi.org/10.1089/scd.2016.0268

    Article  CAS  PubMed  Google Scholar 

  18. Moxon-Emre I, Schlichter LC (2010) Evolution of inflammation and white matter injury in a model of transient focal ischemia. J Neuropathol Exp Neurol 69(1):1–15. https://doi.org/10.1097/NEN.0b013e3181c3ce6c

    Article  CAS  PubMed  Google Scholar 

  19. Liu XS, Chopp M, Kassis H, Jia LF, Hozeska-Solgot A, Zhang RL, Chen C, Cui YS et al (2012) Valproic acid increases white matter repair and neurogenesis after stroke. Neuroscience 220:313–321. https://doi.org/10.1016/j.neuroscience.2012.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Luo Q, Ding L, Zhang N, Jiang Z, Gao C, Xue L, Peng B, Wang G (2018) A stable and easily reproducible model of focal white matter demyelination. J Neurosci Methods 307:230–239. https://doi.org/10.1016/j.jneumeth.2018.05.024

    Article  PubMed  Google Scholar 

  21. Wang G, Ding L, Gao C, Zhang N, Gan D, Sun Y, Xu L, Luo Q et al (2019) Neuroprotective effect of l-serine against white matter demyelination by harnessing and modulating inflammation in mice. Neuropharmacology 146:39–49. https://doi.org/10.1016/j.neuropharm.2018.11.025

    Article  CAS  PubMed  Google Scholar 

  22. Dehghan S, Hesaraki M, Soleimani M, Mirnajafi-Zadeh J, Fathollahi Y, Javan M (2016) Oct4 transcription factor in conjunction with valproic acid accelerates myelin repair in demyelinated optic chiasm in mice. Neuroscience 318:178–189. https://doi.org/10.1016/j.neuroscience.2016.01.028

    Article  CAS  PubMed  Google Scholar 

  23. Xuan A, Long D, Li J, Ji W, Hong L, Zhang M, Zhang W (2012) Neuroprotective effects of valproic acid following transient global ischemia in rats. Life Sci 90(11–12):463–468. https://doi.org/10.1016/j.lfs.2012.01.001

    Article  CAS  PubMed  Google Scholar 

  24. Wang G, Shi Y, Jiang X, Leak RK, Hu X, Wu Y, Pu H, Li WW et al (2015) HDAC inhibition prevents white matter injury by modulating microglia/macrophage polarization through the GSK3beta/PTEN/Akt axis. Proc Natl Acad Sci U S A 112(9):2853–2858. https://doi.org/10.1073/pnas.1501441112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Picou F, Fauquier T, Chatonnet F, Flamant F (2012) A bimodal influence of thyroid hormone on cerebellum oligodendrocyte differentiation. Mol Endocrinol 26(4):608–618. https://doi.org/10.1210/me.2011-1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kalakh S, Mouihate A (2015) The promyelinating properties of androstenediol in gliotoxin-induced demyelination in rat corpus callosum. Neuropathol Appl Neurobiol 41(7):964–982. https://doi.org/10.1111/nan.12237

    Article  CAS  PubMed  Google Scholar 

  27. Gautier HO, Evans KA, Volbracht K, James R, Sitnikov S, Lundgaard I, James F, Lao-Peregrin C et al (2015) Neuronal activity regulates remyelination via glutamate signalling to oligodendrocyte progenitors. Nat Commun 6:8518. https://doi.org/10.1038/ncomms9518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Boyd A, Zhang H, Williams A (2013) Insufficient OPC migration into demyelinated lesions is a cause of poor remyelination in MS and mouse models. Acta Neuropathol 125(6):841–859. https://doi.org/10.1007/s00401-013-1112-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wegener A, Deboux C, Bachelin C, Frah M, Kerninon C, Seilhean D, Weider M, Wegner M et al (2015) Gain of Olig2 function in oligodendrocyte progenitors promotes remyelination. Brain : a journal of neurology 138(Pt 1):120–135. https://doi.org/10.1093/brain/awu375

    Article  Google Scholar 

  30. Tartaglione AM, Cipriani C, Chiarotti F, Perrone B, Balestrieri E, Matteucci C, Sinibaldi-Vallebona P, Calamandrei G et al (2019) Early behavioral alterations and increased expression of endogenous retroviruses are inherited across generations in mice prenatally exposed to valproic acid. Mol Neurobiol 56(5):3736–3750. https://doi.org/10.1007/s12035-018-1328-x

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Q, Yang F, Li X, Wang LW, Chu XG, Zhang H, Gong ZJ (2015) Trichostatin a protects against experimental acute-on-chronic liver failure in rats through regulating the acetylation of nuclear factor-kappaB. Inflammation 38(3):1364–1373. https://doi.org/10.1007/s10753-014-0108-7

    Article  CAS  PubMed  Google Scholar 

  32. Li AS, Marikawa Y (2016) Adverse effect of valproic acid on an in vitro gastrulation model entails activation of retinoic acid signaling. Reprod Toxicol 66:68–83. https://doi.org/10.1016/j.reprotox.2016.09.015

    Article  CAS  PubMed  Google Scholar 

  33. Baltan S, Bachleda A, Morrison RS, Murphy SP (2011) Expression of histone deacetylases in cellular compartments of the mouse brain and the effects of ischemia. Transl Stroke Res 2(3):411–423. https://doi.org/10.1007/s12975-011-0087-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Al-Ghadban S, Diaz ZT, Singer HJ, Mert KB, Bunnell BA (2020) Increase in leptin and PPAR-gamma gene expression in lipedema adipocytes differentiated in vitro from adipose-derived stem cells. Cells 9(2). https://doi.org/10.3390/cells9020430

  35. Cheng HS, Tan WR, Low ZS, Marvalim C, Lee JYH, Tan NS (2019) Exploration and development of PPAR modulators in health and disease: an update of clinical evidence. Int J Mol Sci 20(20). https://doi.org/10.3390/ijms20205055

  36. Villapol S (2018) Roles of peroxisome proliferator-activated receptor gamma on brain and peripheral inflammation. Cell Mol Neurobiol 38(1):121–132. https://doi.org/10.1007/s10571-017-0554-5

    Article  CAS  PubMed  Google Scholar 

  37. Kanakasabai S, Pestereva E, Chearwae W, Gupta SK, Ansari S, Bright JJ (2012) PPARgamma agonists promote oligodendrocyte differentiation of neural stem cells by modulating stemness and differentiation genes. PLoS One 7(11):e50500. https://doi.org/10.1371/journal.pone.0050500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brunmeir R, Xu F (2018) Functional regulation of PPARs through post-translational modifications. Int J Mol Sci 19(6). https://doi.org/10.3390/ijms19061738

  39. Jiang X, Ye X, Guo W, Lu H, Gao Z (2014) Inhibition of HDAC3 promotes ligand-independent PPARgamma activation by protein acetylation. J Mol Endocrinol 53(2):191–200. https://doi.org/10.1530/JME-14-0066

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gao Z, He Q, Peng B, Chiao PJ, Ye J (2006) Regulation of nuclear translocation of HDAC3 by IkappaBalpha is required for tumor necrosis factor inhibition of peroxisome proliferator-activated receptor gamma function. J Biol Chem 281(7):4540–4547. https://doi.org/10.1074/jbc.M507784200

    Article  PubMed  Google Scholar 

  41. Fajas L, Egler V, Reiter R, Hansen J, Kristiansen K, Debril MB, Miard S, Auwerx J (2002) The retinoblastoma-histone deacetylase 3 complex inhibits PPARgamma and adipocyte differentiation. Dev Cell 3(6):903–910. https://doi.org/10.1016/s1534-5807(02)00360-x

    Article  CAS  PubMed  Google Scholar 

  42. Yoon S, Eom GH (2016) HDAC and HDAC inhibitor: from cancer to cardiovascular diseases. Chonnam medical journal 52(1):1–11. https://doi.org/10.4068/cmj.2016.52.1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Humphrey GW, Wang YH, Hirai T, Padmanabhan R, Panchision DM, Newell LF, McKay RD, Howard BH (2008) Complementary roles for histone deacetylases 1, 2, and 3 in differentiation of pluripotent stem cells. Differentiation; research in biological diversity 76(4):348–356. https://doi.org/10.1111/j.1432-0436.2007.00232.x

    Article  CAS  PubMed  Google Scholar 

  44. He X, Zhang L, Queme LF, Liu X, Lu A, Waclaw RR, Dong X, Zhou W et al (2018) A histone deacetylase 3-dependent pathway delimits peripheral myelin growth and functional regeneration. Nat Med 24(3):338–351. https://doi.org/10.1038/nm.4483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chinese Natural Science Foundation (Grants 81873924, 81471257) and sponsored by Nantong Science and Technology Project (MS12018030, MS12018048). Dr. Wang’s work has also been funded by Qing Lan Project of Jiangsu Province of China.

Availability of Data and Materials

All original data are available upon request.

Author information

Authors and Affiliations

Authors

Contributions

G.H.W. and Z.L.J. conceived, organized and supervised the work; L.Z.D., J.M.Z. and L.S.Y. performed the experiments; Y.C.S., D.Q.G., L.H.X. and Q.Q.L. contributed to the analysis of data; G.H.W. prepared, wrote and revised the manuscript.

Corresponding authors

Correspondence to Zhenglin Jiang or Guohua Wang.

Ethics declarations

All experiments were conducted according to the National Institutes of Health Guide for the Care and Use of Laboratory Animals and approved by the Animal Ethics Committees of Nantong University (NU-2017-39).

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Fig. S1

Effect of VPA on spatial exploration and emotion in mice after FDL induction. (A) Proportions of time spent by mice exploring the novel object vs. both objects (RI values) in the novel object recognition test. (B–C) Results of the Y-maze test, (D–F) open-field test and (G) rotarod test performed 10 days after FDL induction. (H–I) Results of the Y-maze test performed 28 days after FDL induction. The data are presented as the means ± SEMs, n ≥ 8 mice/group. *p < 0.05 and **p < 0.01 for the indicated comparisons. (PNG 926 kb)

High resolution image (TIF 1359 kb)

Fig. S2

Microarray analysis of the effect of VPA on the differentiation of primary cultured OPCs into oligodendrocytes after treatment with LPS in vitro. Gene-chip microarray analyses were performed using OPCs treated with vehicle, VPA (1 mM), LPS (5 μg/ml) or LPS + VPA for 24 h. The table lists several functional genes that showed at least 9-fold changes after VPA treatment based on two independent microarray assays. Interestingly, PPAR-γ, but not PPAR-α or PPAR-β, was upregulated by VPA. PPAR-γ is a transcription factor that regulates over 100 genes involved in inflammation, cell proliferation and differentiation. (PNG 1150 kb)

High resolution image (TIF 1684 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, L., Zhou, J., Ye, L. et al. PPAR-γ Is Critical for HDAC3-Mediated Control of Oligodendrocyte Progenitor Cell Proliferation and Differentiation after Focal Demyelination. Mol Neurobiol 57, 4810–4824 (2020). https://doi.org/10.1007/s12035-020-02060-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02060-8

Keywords

Navigation