Skip to main content

Advertisement

Log in

Palbociclib Effectively Halts Proliferation but Fails to Induce Senescence in Patient-Derived Glioma Stem Cells

Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Glioblastoma multiforme is the most aggressive primary brain tumor. Current knowledge suggests that the growth and recurrence of these tumors are due in part to the therapy-resistant glioma stem cell subpopulation, which possesses the ability for self-renewal and proliferation, driving tumor progression. In many cancers, the p16INK4a-CDK4/6-pRb pathway is disrupted in favor of cell cycle progression. In particular, the frequent deregulation of CDK4/6 in cancer positions these kinases as promising targets. Palbociclib, a potent and selective CDK4/6 inhibitor, has been approved by the FDA as a first-line treatment of advanced breast cancer and there is currently interest in evaluating its effect on other cancer types. Palbociclib has been reported to be efficient, not only at halting proliferation, but also at inducing senescence in different tumor types. In this study, we evaluated the effect of this inhibitor on four patient-derived glioma stem cell-enriched cell lines. We found that Palbociclib rapidly and effectively inhibits proliferation without affecting cell viability. We also established that in these cell lines CDK6 is the key interphase CDK for controlling cell cycle progression. Prolonged exposure to Palbociclib induced a senescent-like phenotype characterized by flattened morphology, cell cycle arrest, increased β-galactosidase activity and induction of other senescent-associated markers. However, we found that after Palbociclib removal cell lines resumed normal proliferation, which implies they conserved their replicative potential. As a whole, our results indicate that in patient-derived glioma stem cell-enriched cell lines, Palbociclib induces a senescent-like quiescence rather than true senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    Article  CAS  Google Scholar 

  2. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8(10):755–768

    Article  CAS  Google Scholar 

  3. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111

    Article  CAS  Google Scholar 

  4. Videla Richardson GA, Garcia CP, Roisman A, Slavutsky I, Fernandez Espinosa DD, Romorini L, Miriuka SG, Arakaki N et al (2016) Specific preferences in lineage choice and phenotypic plasticity of glioma stem cells under BMP4 and noggin influence. Brain Pathol 26(1):43–61

    Article  CAS  Google Scholar 

  5. Hunter T, Pines J (1994) Cyclins and cancer. II: cyclin D and CDK inhibitors come of age. Cell 79(4):573–582

    Article  CAS  Google Scholar 

  6. Sherr CJ (1996) Cancer cell cycles. Science 274(5293):1672–1677

    Article  CAS  Google Scholar 

  7. van den Heuvel S, Harlow E (1993) Distinct roles for cyclin-dependent kinases in cell cycle control. Science 262(5142):2050–2054

    Article  Google Scholar 

  8. Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13(12):1501–1512

    Article  CAS  Google Scholar 

  9. Peeper DS, Upton TM, Ladha MH, Neuman E, Zalvide J, Bernards R, DeCaprio JA, Ewen ME (1997) Ras signalling linked to the cell-cycle machinery by the retinoblastoma protein. Nature 386(6621):177–181

    Article  CAS  Google Scholar 

  10. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812

    Article  CAS  Google Scholar 

  11. Fry DW, Harvey PJ, Keller PR, Elliott WL, Meade M, Trachet E, Albassam M, Zheng X et al (2004) Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther 3(11):1427–1438

    CAS  PubMed  Google Scholar 

  12. Finn RS, Martin M, Rugo HS, Jones S, Im SA, Gelmon K, Harbeck N, Lipatov ON et al (2016) Palbociclib and letrozole in advanced breast cancer. N Engl J Med 375(20):1925–1936

    Article  CAS  Google Scholar 

  13. Hamilton E, Infante JR (2016) Targeting CDK4/6 in patients with cancer. Cancer Treat Rev 45:129–138

    Article  CAS  Google Scholar 

  14. Baughn LB, Di Liberto M, Wu K, Toogood PL, Louie T, Gottschalk R, Niesvizky R, Cho H et al (2006) A novel orally active small molecule potently induces G1 arrest in primary myeloma cells and prevents tumor growth by specific inhibition of cyclin-dependent kinase 4/6. Cancer Res 66(15):7661–7667

    Article  CAS  Google Scholar 

  15. VanArsdale T, Boshoff C, Arndt KT, Abraham RT (2015) Molecular pathways: targeting the cyclin D-CDK4/6 axis for cancer treatment. Clin Cancer Res 21(13):2905–2910

    Article  CAS  Google Scholar 

  16. Kovatcheva M, Liu DD, Dickson MA, Klein ME, O'Connor R, Wilder FO, Socci ND, Tap WD et al (2015) MDM2 turnover and expression of ATRX determine the choice between quiescence and senescence in response to CDK4 inhibition. Oncotarget 6(10):8226–8243

    Article  Google Scholar 

  17. Michaud K, Solomon DA, Oermann E, Kim JS, Zhong WZ, Prados MD, Ozawa T, James CD et al (2010) Pharmacologic inhibition of cyclin-dependent kinases 4 and 6 arrests the growth of glioblastoma multiforme intracranial xenografts. Cancer Res 70(8):3228–3238

    Article  CAS  Google Scholar 

  18. Leontieva OV, Blagosklonny MV (2013) CDK4/6-inhibiting drug substitutes for p21 and p16 in senescence: duration of cell cycle arrest and MTOR activity determine geroconversion. Cell Cycle 12(18):3063–3069

    Article  CAS  Google Scholar 

  19. Schmitt CA (2007) Cellular senescence and cancer treatment. Biochim Biophys Acta 1775(1):5–20

    CAS  PubMed  Google Scholar 

  20. Garcia CP, Videla Richardson GA, Dimopoulos NA, Fernandez Espinosa DD, Miriuka SG, Sevlever GE, Romorini L, Scassa ME (2016) Human pluripotent stem cells and derived neuroprogenitors display differential degrees of susceptibility to BH3 mimetics ABT-263, WEHI-539 and ABT-199. PLoS One 11(3):e0152607

    Article  Google Scholar 

  21. Morris-Hanon O, Furmento VA, Rodriguez-Varela MS, Mucci S, Fernandez-Espinosa DD, Romorini L, Sevlever GE, Scassa ME et al (2017) The cell cycle inhibitors p21(Cip1) and p27(Kip1) control proliferation but enhance DNA damage resistance of glioma stem cells. Neoplasia 19(7):519–529

    Article  CAS  Google Scholar 

  22. Cicenas J, Kalyan K, Sorokinas A, Stankunas E, Levy J, Meskinyte I, Stankevicius V, Kaupinis A et al (2015) Roscovitine in cancer and other diseases. Ann Transl Med 3(10):135

    PubMed  PubMed Central  Google Scholar 

  23. Cicenas J, Valius M (2011) The CDK inhibitors in cancer research and therapy. J Cancer Res Clin Oncol 137(10):1409–1418

    Article  CAS  Google Scholar 

  24. Anders L, Ke N, Hydbring P, Choi YJ, Widlund HR, Chick JM, Zhai H, Vidal M et al (2011) A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. Cancer Cell 20(5):620–634

    Article  CAS  Google Scholar 

  25. Wang Z, Wei D, Xiao H (2013) Methods of cellular senescence induction using oxidative stress. Methods Mol Biol 1048:135–144. https://doi.org/10.1007/978-1-62703-556-9_11

    Article  CAS  PubMed  Google Scholar 

  26. Coppe JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118

    Article  CAS  Google Scholar 

  27. Tadesse S, Yu M, Kumarasiri M, Le BT, Wang S (2015) Targeting CDK6 in cancer: state of the art and new insights. Cell Cycle 14(20):3220–3230

    Article  CAS  Google Scholar 

  28. Demidenko ZN, Zubova SG, Bukreeva EI, Pospelov VA, Pospelova TV, Blagosklonny MV (2009) Rapamycin decelerates cellular senescence. Cell Cycle 8(12):1888–1895

    Article  CAS  Google Scholar 

  29. Nam HY, Han MW, Chang HW, Lee YS, Lee M, Lee HJ, Lee BW, Lee KE et al (2013) Radioresistant cancer cells can be conditioned to enter senescence by mTOR inhibition. Cancer Res 73(14):4267–4277

    Article  CAS  Google Scholar 

  30. Yoshida A, Lee EK, Diehl JA (2016) Induction of therapeutic senescence in vemurafenib-resistant melanoma by extended inhibition of CDK4/6. Cancer Res 76(10):2990–3002

    Article  CAS  Google Scholar 

  31. Zou X, Ray D, Aziyu A, Christov K, Boiko AD, Gudkov AV, Kiyokawa H (2002) Cdk4 disruption renders primary mouse cells resistant to oncogenic transformation, leading to Arf/p53-independent senescence. Genes Dev 16(22):2923–2934

    Article  CAS  Google Scholar 

  32. Bonelli MA, Digiacomo G, Fumarola C, Alfieri R, Quaini F, Falco A, Madeddu D, La Monica S et al (2017) Combined inhibition of CDK4/6 and PI3K/AKT/mTOR pathways induces a synergistic anti-tumor effect in malignant pleural mesothelioma cells. Neoplasia 19(8):637–648

    Article  CAS  Google Scholar 

  33. Paugh BS, Paugh SW, Bryan L, Kapitonov D, Wilczynska KM, Gopalan SM, Rokita H, Milstien S et al (2008) EGF regulates plasminogen activator inhibitor-1 (PAI-1) by a pathway involving c-Src, PKCdelta, and sphingosine kinase 1 in glioblastoma cells. FASEB J 22(2):455–465

    Article  CAS  Google Scholar 

  34. Piperi C, Samaras V, Levidou G, Kavantzas N, Boviatsis E, Petraki K, Grivas A, Barbatis C et al (2011) Prognostic significance of IL-8-STAT-3 pathway in astrocytomas: correlation with IL-6, VEGF and microvessel morphometry. Cytokine 55(3):387–395

    Article  CAS  Google Scholar 

  35. Valenzuela CA, Vargas L, Martinez V, Bravo S, Brown NE (2017) Palbociclib-induced autophagy and senescence in gastric cancer cells. Exp Cell Res 360(2):390–396

    Article  CAS  Google Scholar 

  36. Taylor JW, Parikh M, Phillips JJ, James CD, Molinaro AM, Butowski NA, Clarke JL, Oberheim-Bush NA et al (2018) Phase-2 trial of palbociclib in adult patients with recurrent RB1-positive glioblastoma. J Neuro-Oncol 140(2):477–483

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) and Instituto Nacional del Cáncer (INC) de la República Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Agustín Videla-Richardson.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Suppl. Fig. 1

Palbociclib induces β-gal activity in GSC-ECLs. Representative images of G02, G07, and G09 cells treated or not with Palbociclib for 14 days and stained for β-gal activity. Scale bar: 50 μm (PNG 1389 kb)

High-resolution image (TIF 6206 kb)

Suppl. Fig. 2

Inhibition of the PKB/mTOR signaling pathway impairs the Palbociclib-induced β-gal+ phenotype. Representative images of G09 cells treated or not with the indicated inhibitors for 14 days and stained for β-gal activity. Scale bar: 50 μm (PNG 1298 kb)

High-resolution image (TIF 5861 kb)

Suppl. Fig. 3

H2O2 treatment induces β-gal activity in HF and GSC-ECLs. Representative images of HF, G08 and G09 cells treated or not with H2O2 (as described in Materials and Methods) and stained for β-gal activity. Scale bar: 50 μm (PNG 1304 kb)

High-resolution image (TIF 6142 kb)

Suppl. Fig. 4

Proliferative potential of G02 and G07 cell lines after a 14-day treatment with Palbociclib 1 μM. (a) Daily growth rate and (b) proportion of Ki67+ cells (normalized to untreated cells) were measured at different points after the end of treatments. Each point represents the mean ± S.D. of one representative experiment (PNG 405 kb)

High-resolution image (TIF 814 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morris-Hanon, O., Marazita, M.C., Romorini, L. et al. Palbociclib Effectively Halts Proliferation but Fails to Induce Senescence in Patient-Derived Glioma Stem Cells. Mol Neurobiol 56, 7810–7821 (2019). https://doi.org/10.1007/s12035-019-1633-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-1633-z

Keywords

Navigation