Skip to main content
Log in

Neurodevelopmental Disorders: Functional Role of Ambra1 in Autism and Schizophrenia

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The activating molecule in Beclin-1-regulated autophagy (Ambra1) is a highly intrinsically disordered protein best known for its role as a mediator in autophagy, by favoring the formation of autophagosomes. Additional studies have revealed that Ambra1 is able to coordinate cell responses to stress conditions such as starvation, and it actively participates in cell proliferation, cytoskeletal modification, apoptosis, mitochondria removal, and cell cycle downregulation. All these functions highlight the importance of Ambra1 in crucial physiological events, including metabolism, cell death, and cell division. Importantly, Ambra1 is also crucial for proper embryonic development, and its complete absence in knock-out animal models leads to severe brain morphology defects. In line with this, it has recently been implicated in neurodevelopmental disorders affecting humans, particularly autism spectrum disorders and schizophrenia. Here, we discuss the recent links between Ambra1 and neurodevelopment, particularly focusing on its role during the maturation of hippocampal parvalbumin interneurons and its importance for maintaining a proper excitation/inhibition balance in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fimia GM, Stoykova A, Romagnoli A et al (2007) Ambra1 regulates autophagy and development of the nervous system. Nature 447:1121–1125. https://doi.org/10.1038/nature05925

    Article  CAS  PubMed  Google Scholar 

  2. Cianfanelli V, De Zio D, Di Bartolomeo S et al (2015) Ambra1 at a glance. J Cell Sci 128:2003–2008. https://doi.org/10.1242/jcs.168153

    Article  CAS  PubMed  Google Scholar 

  3. Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura SI, Natsume T et al (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20:1981–1991. https://doi.org/10.1091/mbc.e08-12-1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mei Y, Su M, Soni G, Salem S, Colbert CL, Sinha SC (2014) Intrinsically disordered regions in autophagy proteins. Proteins 82:565–578. https://doi.org/10.1002/prot.24424

    Article  CAS  PubMed  Google Scholar 

  5. Nazio F, Cecconi F (2013) mTOR, AMBRA1, and autophagy: an intricate relationship. Cell Cycle Georget Tex 12:2524–2525. https://doi.org/10.4161/cc.25835

    Article  CAS  Google Scholar 

  6. Nazio F, Strappazzon F, Antonioli M et al (2013) mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol 15:406–416. https://doi.org/10.1038/ncb2708

    Article  CAS  PubMed  Google Scholar 

  7. Xia P, Wang S, Huang G, du Y, Zhu P, Li M, Fan Z (2014) RNF2 is recruited by WASH to ubiquitinate AMBRA1 leading to downregulation of autophagy. Cell Res 24:943–958. https://doi.org/10.1038/cr.2014.85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Di Bartolomeo S, Corazzari M, Nazio F et al (2010) The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J Cell Biol 191:155–168. https://doi.org/10.1083/jcb.201002100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Van Humbeeck C, Cornelissen T, Hofkens H et al (2011) Parkin interacts with Ambra1 to induce mitophagy. J Neurosci 31:10249–10261. https://doi.org/10.1523/JNEUROSCI.1917-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Strappazzon F, Nazio F, Corrado M, Cianfanelli V, Romagnoli A, Fimia GM, Campello S, Nardacci R et al (2015) AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1. Cell Death Differ 22:419–432. https://doi.org/10.1038/cdd.2014.139

    Article  CAS  PubMed  Google Scholar 

  11. Di Rita A, Peschiaroli A, D′Acunzo P, et al (2018) HUWE1 E3 ligase promotes PINK1/PARKIN-independent mitophagy by regulating AMBRA1 activation via IKKα. Nat Commun 9. https://doi.org/10.1038/s41467-018-05722-3

  12. Di Rita A, D’Acunzo P, Simula L et al (2018) AMBRA1-mediated mitophagy counteracts oxidative stress and apoptosis induced by neurotoxicity in human neuroblastoma SH-SY5Y cells. Front Cell Neurosci 12:92. https://doi.org/10.3389/fncel.2018.00092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Benato F, Skobo T, Gioacchini G, Moro I, Ciccosanti F, Piacentini M, Fimia GM, Carnevali O et al (2013) Ambra1 knockdown in zebrafish leads to incomplete development due to severe defects in organogenesis. Autophagy 9:476–495. https://doi.org/10.4161/auto.23278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nobili A, Krashia P, Cordella A, la Barbera L, Dell’Acqua MC, Caruso A, Pignataro A, Marino R et al (2018) Ambra1 shapes hippocampal inhibition/excitation balance: role in neurodevelopmental disorders. Mol Neurobiol 55:7921–7940. https://doi.org/10.1007/s12035-018-0911-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pagliarini V, Wirawan E, Romagnoli A, Ciccosanti F, Lisi G, Lippens S, Cecconi F, Fimia GM et al (2012) Proteolysis of Ambra1 during apoptosis has a role in the inhibition of the autophagic pro-survival response. Cell Death Differ 19:1495–1504. https://doi.org/10.1038/cdd.2012.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Strappazzon F, Vietri-Rudan M, Campello S, Nazio F, Florenzano F, Fimia GM, Piacentini M, Levine B et al (2011) Mitochondrial BCL-2 inhibits AMBRA1-induced autophagy. EMBO J 30:1195–1208. https://doi.org/10.1038/emboj.2011.49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Strappazzon F, Di Rita A, Cianfanelli V et al (2016) Prosurvival AMBRA1 turns into a proapoptotic BH3-like protein during mitochondrial apoptosis. Autophagy 12:963–975. https://doi.org/10.1080/15548627.2016.1164359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cianfanelli V, Fuoco C, Lorente M, Salazar M, Quondamatteo F, Gherardini PF, de Zio D, Nazio F et al (2015) AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-MYC dephosphorylation and degradation. Nat Cell Biol 17:20–30. https://doi.org/10.1038/ncb3072

    Article  CAS  PubMed  Google Scholar 

  19. Vázquez P, Arroba AI, Cecconi F, de la Rosa EJ, Boya P, de Pablo F (2012) Atg5 and Ambra1 differentially modulate neurogenesis in neural stem cells. Autophagy 8:187–199. https://doi.org/10.4161/auto.8.2.18535

    Article  CAS  PubMed  Google Scholar 

  20. Fimia GM, Corazzari M, Antonioli M, Piacentini M (2013) Ambra1 at the crossroad between autophagy and cell death. Oncogene 32:3311–3318. https://doi.org/10.1038/onc.2012.455

    Article  CAS  PubMed  Google Scholar 

  21. Kang R, Zeh HJ, Lotze MT, Tang D (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18:571–580. https://doi.org/10.1038/cdd.2010.191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Antonioli M, Albiero F, Fimia GM, Piacentini M (2015) AMBRA1-regulated autophagy in vertebrate development. Int J Dev Biol 59:109–117. https://doi.org/10.1387/ijdb.150057mp

    Article  CAS  PubMed  Google Scholar 

  23. Skobo T, Benato F, Grumati P, Meneghetti G, Cianfanelli V, Castagnaro S, Chrisam M, di Bartolomeo S et al (2014) Zebrafish ambra1a and ambra1b knockdown impairs skeletal muscle development. PLoS One 9:e99210. https://doi.org/10.1371/journal.pone.0099210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Heinrich A, Nees F, Lourdusamy A, Tzschoppe J, Meier S, Vollstädt-Klein S, Fauth-Bühler M, Steiner S et al (2013) From gene to brain to behavior: schizophrenia-associated variation in AMBRA1 alters impulsivity-related traits. Eur J Neurosci 38:2941–2945. https://doi.org/10.1111/ejn.12201

    Article  PubMed  Google Scholar 

  25. Mitjans M, Begemann M, Ju A, Dere E, Wüstefeld L, Hofer S, Hassouna I, Balkenhol J et al (2017) Sexual dimorphism of AMBRA1-related autistic features in human and mouse. Transl Psychiatry 7:e1247. https://doi.org/10.1038/tp.2017.213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rietschel M, Mattheisen M, Degenhardt F et al (2012) Association between genetic variation in a region on chromosome 11 and schizophrenia in large samples from Europe. Mol Psychiatry 17:906–917. https://doi.org/10.1038/mp.2011.80

    Article  CAS  PubMed  Google Scholar 

  27. Dere E, Dahm L, Lu D, Hammerschmidt K, Ju A, Tantra M, Kästner A, Chowdhury K et al (2014) Heterozygous ambra1 deficiency in mice: a genetic trait with autism-like behavior restricted to the female gender. Front Behav Neurosci 8:181. https://doi.org/10.3389/fnbeh.2014.00181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cecconi F, Levine B (2008) The role of autophagy in mammalian development. Dev Cell 15:344–357. https://doi.org/10.1016/j.devcel.2008.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mizushima N, Levine B (2010) Autophagy in mammalian development and differentiation. Nat Cell Biol 12:823–830. https://doi.org/10.1038/ncb0910-823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders (DSM-5®, 5th edition). American Psychiatric Publishing

  31. Krakowski MI, Czobor P (2018) Distinctive profiles of traits predisposing to violence in schizophrenia and in the general population. Schizophr Res 202:267–273. https://doi.org/10.1016/j.schres.2018.07.008

    Article  PubMed  Google Scholar 

  32. McClain MB, Hasty Mills AM, Murphy LE (2017) Inattention and hyperactivity/impulsivity among children with attention-deficit/hyperactivity-disorder, autism spectrum disorder, and intellectual disability. Res Dev Disabil 70:175–184. https://doi.org/10.1016/j.ridd.2017.09.009

    Article  PubMed  Google Scholar 

  33. Richard-Lepouriel H, Kung A-L, Hasler R, Bellivier F, Prada P, Gard S, Ardu S, Kahn JP et al (2019) Impulsivity and its association with childhood trauma experiences across bipolar disorder, attention deficit hyperactivity disorder and borderline personality disorder. J Affect Disord 244:33–41. https://doi.org/10.1016/j.jad.2018.07.060

    Article  PubMed  Google Scholar 

  34. Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, Nugent TF, Herman DH et al (2004) Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci U S A 101:8174–8179. https://doi.org/10.1073/pnas.0402680101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tau GZ, Peterson BS (2010) Normal development of brain circuits. Neuropsychopharmacol 35:147–168. https://doi.org/10.1038/npp.2009.115

    Article  Google Scholar 

  36. Stiles J, Jernigan TL (2010) The basics of brain development. Neuropsychol Rev 20:327–348. https://doi.org/10.1007/s11065-010-9148-4

    Article  PubMed  PubMed Central  Google Scholar 

  37. Silbereis JC, Pochareddy S, Zhu Y, Li M, Sestan N (2016) The cellular and molecular landscapes of the developing human central nervous system. Neuron 89:248–268. https://doi.org/10.1016/j.neuron.2015.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Roeper J (2018) Closing gaps in brain disease-from overlapping genetic architecture to common motifs of synapse dysfunction. Curr Opin Neurobiol 48:45–51. https://doi.org/10.1016/j.conb.2017.09.007

    Article  CAS  PubMed  Google Scholar 

  39. De Rubeis S, He X, Goldberg AP et al (2014) Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515:209–215. https://doi.org/10.1038/nature13772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Johnson MR, Shkura K, Langley SR, Delahaye-Duriez A, Srivastava P, Hill WD, Rackham OJL, Davies G et al (2016) Systems genetics identifies a convergent gene network for cognition and neurodevelopmental disease. Nat Neurosci 19:223–232. https://doi.org/10.1038/nn.4205

    Article  CAS  PubMed  Google Scholar 

  41. Wen Z, Nguyen HN, Guo Z, Lalli MA, Wang X, Su Y, Kim NS, Yoon KJ et al (2014) Synaptic dysregulation in a human iPS cell model of mental disorders. Nature 515:414–418. https://doi.org/10.1038/nature13716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Denève S, Alemi A, Bourdoukan R (2017) The brain as an efficient and robust adaptive learner. Neuron 94:969–977. https://doi.org/10.1016/j.neuron.2017.05.016

    Article  CAS  PubMed  Google Scholar 

  43. Rubin DB, Van Hooser SD, Miller KD (2015) The stabilized supralinear network: a unifying circuit motif underlying multi-input integration in sensory cortex. Neuron 85:402–417. https://doi.org/10.1016/j.neuron.2014.12.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bingol B, Sheng M (2011) Deconstruction for reconstruction: the role of proteolysis in neural plasticity and disease. Neuron 69:22–32. https://doi.org/10.1016/j.neuron.2010.11.006

    Article  CAS  PubMed  Google Scholar 

  45. Marín O (2012) Interneuron dysfunction in psychiatric disorders. Nat Rev Neurosci 13:107–120. https://doi.org/10.1038/nrn3155

    Article  CAS  PubMed  Google Scholar 

  46. Marín O (2016) Developmental timing and critical windows for the treatment of psychiatric disorders. Nat Med 22:1229–1238. https://doi.org/10.1038/nm.4225

    Article  CAS  PubMed  Google Scholar 

  47. Selten M, van Bokhoven H, Nadif Kasri N (2018) Inhibitory control of the excitatory/inhibitory balance in psychiatric disorders. F1000Research 7:23. https://doi.org/10.12688/f1000research.12155.1

    Article  PubMed  PubMed Central  Google Scholar 

  48. Betancur C (2011) Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Res 1380:42–77. https://doi.org/10.1016/j.brainres.2010.11.078

    Article  CAS  PubMed  Google Scholar 

  49. Craig AM, Kang Y (2007) Neurexin-neuroligin signaling in synapse development. Curr Opin Neurobiol 17:43–52. https://doi.org/10.1016/j.conb.2007.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Leblond CS, Nava C, Polge A et al (2014) Meta-analysis of SHANK mutations in autism spectrum disorders: a gradient of severity in cognitive impairments. PLoS Genet 10:e1004580. https://doi.org/10.1371/journal.pgen.1004580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Monteiro P, Feng G (2017) SHANK proteins: roles at the synapse and in autism spectrum disorder. Nat Rev Neurosci 18:147–157. https://doi.org/10.1038/nrn.2016.183

    Article  CAS  PubMed  Google Scholar 

  52. Südhof TC (2008) Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455:903–911. https://doi.org/10.1038/nature07456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Toro R, Konyukh M, Delorme R, Leblond C, Chaste P, Fauchereau F, Coleman M, Leboyer M et al (2010) Key role for gene dosage and synaptic homeostasis in autism spectrum disorders. Trends Genet 26:363–372. https://doi.org/10.1016/j.tig.2010.05.007

    Article  CAS  PubMed  Google Scholar 

  54. Washbourne P (2015) Synapse assembly and neurodevelopmental disorders. Neuropsychopharmacol 40:4–15. https://doi.org/10.1038/npp.2014.163

    Article  Google Scholar 

  55. Dean C, Dresbach T (2006) Neuroligins and neurexins: linking cell adhesion, synapse formation and cognitive function. Trends Neurosci 29:21–29. https://doi.org/10.1016/j.tins.2005.11.003

    Article  CAS  PubMed  Google Scholar 

  56. Durand CM, Betancur C, Boeckers TM et al (2007) Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 39:25–27. https://doi.org/10.1038/ng1933

    Article  CAS  PubMed  Google Scholar 

  57. Feng J, Schroer R, Yan J et al (2006) High frequency of neurexin 1beta signal peptide structural variants in patients with autism. Neurosci Lett 409:10–13. https://doi.org/10.1016/j.neulet.2006.08.017

    Article  CAS  PubMed  Google Scholar 

  58. Laumonnier F, Bonnet-Brilhault F, Gomot M, Blanc R, David A, Moizard MP, Raynaud M, Ronce N et al (2004) X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. Am J Hum Genet 74:552–557. https://doi.org/10.1086/382137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Reichelt AC, Rodgers RJ, Clapcote SJ (2012) The role of neurexins in schizophrenia and autistic spectrum disorder. Neuropharmacology 62:1519–1526. https://doi.org/10.1016/j.neuropharm.2011.01.024

    Article  CAS  PubMed  Google Scholar 

  60. Blundell J, Blaiss CA, Etherton MR et al (2010) Neuroligin-1 deletion results in impaired spatial memory and increased repetitive behavior. J Neurosci 30:2115–2129. https://doi.org/10.1523/JNEUROSCI.4517-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Etherton MR, Blaiss CA, Powell CM, Südhof TC (2009) Mouse neurexin-1alpha deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments. Proc Natl Acad Sci U S A 106:17998–18003. https://doi.org/10.1073/pnas.0910297106

    Article  PubMed  PubMed Central  Google Scholar 

  62. Grayton HM, Missler M, Collier DA, Fernandes C (2013) Altered social behaviours in neurexin 1α knockout mice resemble core symptoms in neurodevelopmental disorders. PLoS One 8:e67114. https://doi.org/10.1371/journal.pone.0067114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jiang Y-H, Ehlers MD (2013) Modeling autism by SHANK gene mutations in mice. Neuron 78:8–27. https://doi.org/10.1016/j.neuron.2013.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Peça J, Feliciano C, Ting JT et al (2011) Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472:437–442. https://doi.org/10.1038/nature09965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nelson SB, Valakh V (2015) Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron 87:684–698. https://doi.org/10.1016/j.neuron.2015.07.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rubenstein JLR, Merzenich MM (2003) Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav 2:255–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chattopadhyaya B, Cristo GD (2012) GABAergic circuit dysfunctions in neurodevelopmental disorders. Front Psychiatry 3:51. https://doi.org/10.3389/fpsyt.2012.00051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Coghlan S, Horder J, Inkster B, Mendez MA, Murphy DG, Nutt DJ (2012) GABA system dysfunction in autism and related disorders: from synapse to symptoms. Neurosci Biobehav Rev 36:2044–2055. https://doi.org/10.1016/j.neubiorev.2012.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Collins AL, Ma D, Whitehead PL, Martin ER, Wright HH, Abramson RK, Hussman JP, Haines JL et al (2006) Investigation of autism and GABA receptor subunit genes in multiple ethnic groups. Neurogenetics 7:167–174. https://doi.org/10.1007/s10048-006-0045-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fatemi SH, Reutiman TJ, Folsom TD, Thuras PD (2009) GABA(A) receptor downregulation in brains of subjects with autism. J Autism Dev Disord 39:223–230. https://doi.org/10.1007/s10803-008-0646-7

    Article  PubMed  Google Scholar 

  71. Fatemi SH, Reutiman TJ, Folsom TD et al (2010) mRNA and protein levels for GABAAalpha4, alpha5, beta1 and GABABR1 receptors are altered in brains from subjects with autism. J Autism Dev Disord 40:743–750. https://doi.org/10.1007/s10803-009-0924-z

    Article  PubMed  PubMed Central  Google Scholar 

  72. Fatemi SH, Folsom TD, Rooney RJ, Thuras PD (2013) mRNA and protein expression for novel GABAA receptors θ and ρ2 are altered in schizophrenia and mood disorders; relevance to FMRP-mGluR5 signaling pathway. Transl Psychiatry 3:e271. https://doi.org/10.1038/tp.2013.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Oblak AL, Gibbs TT, Blatt GJ (2010) Decreased GABA(B) receptors in the cingulate cortex and fusiform gyrus in autism. J Neurochem 114:1414–1423. https://doi.org/10.1111/j.1471-4159.2010.06858.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Oblak AL, Gibbs TT, Blatt GJ (2011) Reduced GABAA receptors and benzodiazepine binding sites in the posterior cingulate cortex and fusiform gyrus in autism. Brain Res 1380:218–228. https://doi.org/10.1016/j.brainres.2010.09.021

    Article  CAS  PubMed  Google Scholar 

  75. Fatemi SH, Halt AR, Stary JM et al (2002) Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol Psychiatry 52:805–810

    Article  CAS  PubMed  Google Scholar 

  76. Yip J, Soghomonian J-J, Blatt GJ (2007) Decreased GAD67 mRNA levels in cerebellar Purkinje cells in autism: pathophysiological implications. Acta Neuropathol 113:559–568. https://doi.org/10.1007/s00401-006-0176-3

    Article  CAS  PubMed  Google Scholar 

  77. Gao R, Penzes P (2015) Common mechanisms of excitatory and inhibitory imbalance in schizophrenia and autism spectrum disorders. Curr Mol Med 15:146–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Harada M, Taki MM, Nose A et al (2011) Non-invasive evaluation of the GABAergic/glutamatergic system in autistic patients observed by MEGA-editing proton MR spectroscopy using a clinical 3 tesla instrument. J Autism Dev Disord 41:447–454. https://doi.org/10.1007/s10803-010-1065-0

    Article  PubMed  Google Scholar 

  79. Filice F, Vörckel KJ, Sungur AÖ, Wöhr M, Schwaller B (2016) Reduction in parvalbumin expression not loss of the parvalbumin-expressing GABA interneuron subpopulation in genetic parvalbumin and shank mouse models of autism. Mol Brain 9:10. https://doi.org/10.1186/s13041-016-0192-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Belmonte MK, Gomot M, Baron-Cohen S (2010) Visual attention in autism families: “Unaffected” sibs share atypical frontal activation. J Child Psychol Psychiatry 51:259–276. https://doi.org/10.1111/j.1469-7610.2009.02153.x

    Article  PubMed  Google Scholar 

  81. Dichter GS, Felder JN, Bodfish JW (2009) Autism is characterized by dorsal anterior cingulate hyperactivation during social target detection. Soc Cogn Affect Neurosci 4:215–226. https://doi.org/10.1093/scan/nsp017

    Article  PubMed  PubMed Central  Google Scholar 

  82. Hu H, Gan J, Jonas P (2014) Interneurons. Fast-spiking, parvalbumin+ GABAergic interneurons: From cellular design to microcircuit function. Science 345:1255263. https://doi.org/10.1126/science.1255263

    Article  CAS  PubMed  Google Scholar 

  83. Le Magueresse C, Monyer H (2013) GABAergic interneurons shape the functional maturation of the cortex. Neuron 77:388–405. https://doi.org/10.1016/j.neuron.2013.01.011

    Article  CAS  PubMed  Google Scholar 

  84. Pizzarelli R, Cherubini E (2011) Alterations of GABAergic signaling in autism spectrum disorders. Neural Plast 2011:297153. https://doi.org/10.1155/2011/297153

    Article  PubMed  PubMed Central  Google Scholar 

  85. Hashemi E, Ariza J, Rogers H et al (2017) The number of parvalbumin-expressing interneurons is decreased in the prefrontal cortex in autism. Cereb Cortex 27:1931–1943 https://doi.org/10.1093/cercor/bhx063

    Article  PubMed  Google Scholar 

  86. Danglot L, Triller A, Marty S (2006) The development of hippocampal interneurons in rodents. Hippocampus 16:1032–1060. https://doi.org/10.1002/hipo.20225

    Article  CAS  PubMed  Google Scholar 

  87. Kelsom C, Lu W (2013) Development and specification of GABAergic cortical interneurons. Cell Biosci 3:19. https://doi.org/10.1186/2045-3701-3-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Butt SJB, Fuccillo M, Nery S, Noctor S, Kriegstein A, Corbin JG, Fishell G (2005) The temporal and spatial origins of cortical interneurons predict their physiological subtype. Neuron 48:591–604. https://doi.org/10.1016/j.neuron.2005.09.034

    Article  CAS  PubMed  Google Scholar 

  89. Bezaire MJ, Soltesz I (2013) Quantitative assessment of CA1 local circuits: knowledge base for interneuron-pyramidal cell connectivity. Hippocampus 23:751–785. https://doi.org/10.1002/hipo.22141

    Article  PubMed  PubMed Central  Google Scholar 

  90. Huang ZJ, Di Cristo G, Ango F (2007) Development of GABA innervation in the cerebral and cerebellar cortices. Nat Rev Neurosci 8:673–686. https://doi.org/10.1038/nrn2188

    Article  CAS  PubMed  Google Scholar 

  91. Nörenberg A, Hu H, Vida I et al (2010) Distinct nonuniform cable properties optimize rapid and efficient activation of fast-spiking GABAergic interneurons. Proc Natl Acad Sci U S A 107:894–899. https://doi.org/10.1073/pnas.0910716107

    Article  PubMed  Google Scholar 

  92. Kubota Y, Karube F, Nomura M et al (2011) Conserved properties of dendritic trees in four cortical interneuron subtypes. Sci Rep 1:89. https://doi.org/10.1038/srep00089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Miles R, Tóth K, Gulyás AI, Hájos N, Freund TF (1996) Differences between somatic and dendritic inhibition in the hippocampus. Neuron 16:815–823

    Article  CAS  PubMed  Google Scholar 

  94. Somogyi P, Klausberger T (2005) Defined types of cortical interneuron structure space and spike timing in the hippocampus. J Physiol 562:9–26. https://doi.org/10.1113/jphysiol.2004.078915

    Article  CAS  PubMed  Google Scholar 

  95. Levitt P, Eagleson KL, Powell EM (2004) Regulation of neocortical interneuron development and the implications for neurodevelopmental disorders. Trends Neurosci 27:400–406. https://doi.org/10.1016/j.tins.2004.05.008

    Article  CAS  PubMed  Google Scholar 

  96. Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929. https://doi.org/10.1126/science.1099745

    Article  CAS  PubMed  Google Scholar 

  97. Cardin JA, Carlén M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai LH, Moore CI (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459:663–667. https://doi.org/10.1038/nature08002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fuchs EC, Zivkovic AR, Cunningham MO, Middleton S, LeBeau FEN, Bannerman DM, Rozov A, Whittington MA et al (2007) Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior. Neuron 53:591–604. https://doi.org/10.1016/j.neuron.2007.01.031

    Article  CAS  PubMed  Google Scholar 

  99. Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459:698–702. https://doi.org/10.1038/nature07991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tukker JJ, Fuentealba P, Hartwich K, Somogyi P, Klausberger T (2007) Cell type-specific tuning of hippocampal interneuron firing during gamma oscillations in vivo. J Neurosci 27:8184–8189. https://doi.org/10.1523/JNEUROSCI.1685-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gonzalez-Burgos G, Cho RY, Lewis DA (2015) Alterations in cortical network oscillations and parvalbumin neurons in schizophrenia. Biol Psychiatry 77:1031–1040. https://doi.org/10.1016/j.biopsych.2015.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kamida A, Shimabayashi K, Oguri M et al (2016) EEG power spectrum analysis in children with ADHD. Yonago Acta Med 59:169–173

    PubMed  PubMed Central  Google Scholar 

  103. Karch S, Segmiller F, Hantschk I et al (2012) Increased γ oscillations during voluntary selection processes in adult patients with attention deficit/hyperactivity disorder. J Psychiatr Res 46:1515–1523. https://doi.org/10.1016/j.jpsychires.2012.07.017

    Article  PubMed  Google Scholar 

  104. Lenz D, Krauel K, Schadow J et al (2008) Enhanced gamma-band activity in ADHD patients lacks correlation with memory performance found in healthy children. Brain Res 1235:117–132. https://doi.org/10.1016/j.brainres.2008.06.023

    Article  CAS  PubMed  Google Scholar 

  105. Özerdem A, Güntekin B, Atagün I, Turp B, Başar E (2011) Reduced long distance gamma (28-48 Hz) coherence in euthymic patients with bipolar disorder. J Affect Disord 132:325–332. https://doi.org/10.1016/j.jad.2011.02.028

    Article  PubMed  Google Scholar 

  106. Rojas DC, Wilson LB (2014) γ-Band abnormalities as markers of autism spectrum disorders. Biomark Med 8:353–368. https://doi.org/10.2217/bmm.14.15

    Article  CAS  PubMed  Google Scholar 

  107. Rojas DC, Maharajh K, Teale P, Rogers SJ (2008) Reduced neural synchronization of gamma-band MEG oscillations in first-degree relatives of children with autism. BMC Psychiatry 8:66. https://doi.org/10.1186/1471-244X-8-66

    Article  PubMed  PubMed Central  Google Scholar 

  108. Yordanova J, Banaschewski T, Kolev V, Woerner W, Rothenberger A (2001) Abnormal early stages of task stimulus processing in children with attention-deficit hyperactivity disorder--evidence from event-related gamma oscillations. Clin Neurophysiol 112:1096–1108

    Article  CAS  PubMed  Google Scholar 

  109. Marissal T, Salazar RF, Bertollini C, Mutel S, de Roo M, Rodriguez I, Müller D, Carleton A (2018) Restoring wild-type-like CA1 network dynamics and behavior during adulthood in a mouse model of schizophrenia. Nat Neurosci 21:1412–1420. https://doi.org/10.1038/s41593-018-0225-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Selimbeyoglu A, Kim CK, Inoue M, Lee SY, Hong ASO, Kauvar I, Ramakrishnan C, Fenno LE et al (2017) Modulation of prefrontal cortex excitation/inhibition balance rescues social behavior in CNTNAP2-deficient mice. Sci Transl Med 9:eaah6733. https://doi.org/10.1126/scitranslmed.aah6733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Fisahn A, Pike FG, Buhl EH, Paulsen O (1998) Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature 394:186–189. https://doi.org/10.1038/28179

    Article  CAS  PubMed  Google Scholar 

  112. Gulyás AI, Szabó GG, Ulbert I et al (2010) Parvalbumin-containing fast-spiking basket cells generate the field potential oscillations induced by cholinergic receptor activation in the hippocampus. J Neurosci 30:15134–15145. https://doi.org/10.1523/JNEUROSCI.4104-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ferguson BR, Gao W-J (2018) PV interneurons: critical regulators of E/I balance for prefrontal cortex-dependent behavior and psychiatric disorders. Front Neural Circuits 12:37. https://doi.org/10.3389/fncir.2018.00037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O’Shea DJ, Sohal VS, Goshen I et al (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477:171–178. https://doi.org/10.1038/nature10360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gogolla N, Leblanc JJ, Quast KB et al (2009) Common circuit defect of excitatory-inhibitory balance in mouse models of autism. J Neurodev Disord 1:172–181. https://doi.org/10.1007/s11689-009-9023-x

    Article  PubMed  PubMed Central  Google Scholar 

  116. Bolton PF, Carcani-Rathwell I, Hutton J, Goode S, Howlin P, Rutter M (2011) Epilepsy in autism: features and correlates. Br J Psychiatry 198:289–294. https://doi.org/10.1192/bjp.bp.109.076877

    Article  PubMed  PubMed Central  Google Scholar 

  117. Jeste SS, Tuchman R (2015) Autism spectrum disorder and epilepsy: two sides of the same coin? J Child Neurol 30:1963–1971. https://doi.org/10.1177/0883073815601501

    Article  PubMed  PubMed Central  Google Scholar 

  118. Viscidi EW, Triche EW, Pescosolido MF, McLean RL, Joseph RM, Spence SJ, Morrow EM (2013) Clinical characteristics of children with autism spectrum disorder and co-occurring epilepsy. PLoS One 8:e67797. https://doi.org/10.1371/journal.pone.0067797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hunt CA, Schenker LJ, Kennedy MB (1996) PSD-95 is associated with the postsynaptic density and not with the presynaptic membrane at forebrain synapses. J Neurosci 16:1380–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hutsler JJ, Zhang H (2010) Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res 1309:83–94. https://doi.org/10.1016/j.brainres.2009.09.120

    Article  CAS  PubMed  Google Scholar 

  121. Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM (2011) Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 14:285–293. https://doi.org/10.1038/nn.2741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tang G, Gudsnuk K, Kuo S-H, Cotrina ML, Rosoklija G, Sosunov A, Sonders MS, Kanter E et al (2014) Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 83:1131–1143. https://doi.org/10.1016/j.neuron.2014.07.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Inan M, Zhao M, Manuszak M, Karakaya C, Rajadhyaksha AM, Pickel VM, Schwartz TH, Goldstein PA et al (2016) Energy deficit in parvalbumin neurons leads to circuit dysfunction, impaired sensory gating and social disability. Neurobiol Dis 93:35–46. https://doi.org/10.1016/j.nbd.2016.04.004

    Article  CAS  PubMed  Google Scholar 

  124. Kann O (2016) The interneuron energy hypothesis: Implications for brain disease. Neurobiol Dis 90:75–85. https://doi.org/10.1016/j.nbd.2015.08.005

    Article  CAS  PubMed  Google Scholar 

  125. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889. https://doi.org/10.1038/nature04724

    Article  CAS  PubMed  Google Scholar 

  126. Komatsu M, Waguri S, Chiba T, Murata S, Iwata JI, Tanida I, Ueno T, Koike M et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884. https://doi.org/10.1038/nature04723

    Article  CAS  PubMed  Google Scholar 

  127. Komatsu M, Wang QJ, Holstein GR, Friedrich VL, Iwata JI, Kominami E, Chait BT, Tanaka K et al (2007) Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci U S A 104:14489–14494. https://doi.org/10.1073/pnas.0701311104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Merenlender-Wagner A, Malishkevich A, Shemer Z et al (2015) Autophagy has a key role in the pathophysiology of schizophrenia. Mol Psychiatry 20:126–132. https://doi.org/10.1038/mp.2013.174

    Article  CAS  PubMed  Google Scholar 

  129. Merenlender-Wagner A, Shemer Z, Touloumi O et al (2015) New horizons in schizophrenia treatment: autophagy protection is coupled with behavioral improvements in a mouse model of schizophrenia. Autophagy 10:2324–2332. https://doi.org/10.4161/15548627.2014.984274

    Article  CAS  PubMed Central  Google Scholar 

  130. Nixon RA, Yang D-S (2012) Autophagy and neuronal cell death in neurological disorders. Cold Spring Harb Perspect Biol 4. https://doi.org/10.1101/cshperspect.a008839

  131. Schneider JL, Miller AM, Woesner ME (2016) Autophagy and schizophrenia: a closer look at how dysregulation of neuronal cell homeostasis influences the pathogenesis of schizophrenia. Einstein J Biol Med EJBM 31:34–39. https://doi.org/10.23861/EJBM201631752

    Article  PubMed  Google Scholar 

  132. Sragovich S, Merenlender-Wagner A, Gozes I (2017) ADNP plays a key role in autophagy: from autism to schizophrenia and Alzheimer’s disease. BioEssays 39. https://doi.org/10.1002/bies.201700054

Download references

Funding

A.N. was supported by a post-doctoral Fellowship by the Collegio Ghislieri. P.K. was supported by a post-doctoral Fellowship by the Veronesi Foundation. M.D.A. was supported by an Alzheimer Association’s Research Grant (AARG-18-566270).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marcello D’Amelio or Paraskevi Krashia.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

La Barbera, L., Vedele, F., Nobili, A. et al. Neurodevelopmental Disorders: Functional Role of Ambra1 in Autism and Schizophrenia. Mol Neurobiol 56, 6716–6724 (2019). https://doi.org/10.1007/s12035-019-1557-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-1557-7

Keywords

Navigation