Skip to main content

Advertisement

Log in

JM-20 Treatment After MCAO Reduced Astrocyte Reactivity and Neuronal Death on Peri-infarct Regions of the Rat Brain

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Stroke is frequently associated with severe neurological decline and mortality, and its incidence is expected to increase due to aging population. The only available pharmacological treatment for cerebral ischemia is thrombolysis, with narrow therapeutic windows. Efforts aimed to identify new therapeutics are crucial. In this study, we look into plausible molecular and cellular targets for JM-20, a new hybrid molecule, against ischemic stroke in vivo. Male Wistar rats were subjected to 90 min middle cerebral artery occlusion (MCAO) following 23 h of reperfusion. Animals treated with 8 mg/kg JM-20 (p.o., 1 h after reperfusion) showed minimal neurological impairment and lower GABA and IL-1β levels in CSF when compared to damaged rats that received vehicle. Immunocontent of pro-survival, phosphorylated Akt protein decreased in the cortex after 24 h as result of the ischemic insult, accompanied by decreased number of NeuN+ cells in the peri-infarct cortex, cornu ammonis 1 (CA1) and dentate gyrus (DG) areas. Widespread reactive astrogliosis in both cortex and hippocampus (CA1, CA3, and DG areas) was observed 24 h post-ischemia. JM-20 prevented the activated Akt reduction, neuronal death, and astrocytes reactivity throughout the brain. Overall, the results reinforce the pharmacological potential of JM-20 as neuroprotective agent and provide important evidences about its molecular and cellular targets in this model of cerebral ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22:391–397

    Article  CAS  PubMed  Google Scholar 

  2. Doyle KP, Simon RP, Stenzel-Poore MP (2008) Mechanisms of ischemic brain damage. Neuropharmacology 55(3):310–318. https://doi.org/10.1016/j.neuropharm.2008.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. George PM, Steinberg GK (2015) Novel stroke therapeutics: unraveling stroke pathophysiology and its impact on clinical treatments. Neuron 87(2):297–309. https://doi.org/10.1016/j.neuron.2015.05.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang Z, Zhang G, Sun Y, Szeto SS, Law HC, Quan Q, Li G, Yu P et al (2016) Tetramethylpyrazine nitrone, a multifunctional neuroprotective agent for ischemic stroke therapy. Sci Rep 6:37148. https://doi.org/10.1038/srep37148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lorrio S, Gomez-Rangel V, Negredo P, Egea J, Leon R, Romero A, Dal-Cim T, Villarroya M et al (2013) Novel multitarget ligand ITH33/IQM9.21 provides neuroprotection in in vitro and in vivo models related to brain ischemia. Neuropharmacology 67:403–411. https://doi.org/10.1016/j.neuropharm.2012.12.001

    Article  CAS  PubMed  Google Scholar 

  6. Figueredo YN, Rodriguez EO, Reyes YV, Dominguez CC, Parra AL, Sanchez JR, Hernandez RD, Verdecia MP et al (2013) Characterization of the anxiolytic and sedative profile of JM-20: a novel benzodiazepine-dihydropyridine hybrid molecule. Neurol Res 35(8):804–812. https://doi.org/10.1179/1743132813Y.0000000216

    Article  CAS  PubMed  Google Scholar 

  7. Ramirez-Sanchez J, Simoes Pires EN, Nunez-Figueredo Y, Pardo-Andreu GL, Fonseca-Fonseca LA, Ruiz-Reyes A, Ochoa-Rodriguez E, Verdecia-Reyes Y et al (2015) Neuroprotection by JM-20 against oxygen-glucose deprivation in rat hippocampal slices: involvement of the Akt/GSK-3beta pathway. Neurochem Int 90:215–223. https://doi.org/10.1016/j.neuint.2015.09.003

    Article  CAS  PubMed  Google Scholar 

  8. Nunez-Figueredo Y, Pardo Andreu GL, Oliveira Loureiro S, Ganzella M, Ramirez-Sanchez J, Ochoa-Rodriguez E, Verdecia-Reyes Y, Delgado-Hernandez R et al (2015) The effects of JM-20 on the glutamatergic system in synaptic vesicles, synaptosomes and neural cells cultured from rat brain. Neurochem Int 81:41–47. https://doi.org/10.1016/j.neuint.2015.01.006

    Article  CAS  PubMed  Google Scholar 

  9. Nuñez-Figueredo Y, Ramírez-Sánchez J, Hansel G, Nicoloso E, Merino N, Valdes O, Delgado-Hernández R, Lagarto-Parra A et al (2014) A novel multi-target ligand (JM-20) protects mitochondrial integrity, inhibits brain excitatory amino acid release and reduces cerebral ischemia injury in vitro and in vivo. Neuropharmacology 85:517–527

    Article  PubMed  Google Scholar 

  10. Nuñez-Figueredo Y, Ramirez-Sanchez J, Delgado-Hernandez R, Porto-Verdecia M, Ochoa-Rodriguez E, Verdecia-Reyes Y, Marin-Prida J, Gonzalez-Durruthy M et al (2014) JM-20, a novel benzodiazepine-dihydropyridine hybrid molecule, protects mitochondria and prevents ischemic insult-mediated neural cell death in vitro. Eur J Pharmacol 726C:57–65

    Article  Google Scholar 

  11. Núñez-Figueredo Y, Ramírez-Sanchez J, Hansel G, Pardo-Andreu GL, Merino N, Aparicio G, Delgado-Hernández R, García-Pupo L et al (2016) Therapeutic potential of the novel hybrid molecule JM-20 against focal cortical ischemia in rats. J Pharm Pharmacogn Res 4(4):153–158

    Google Scholar 

  12. Nunez-Figueredo Y, Pardo-Andreu GL, Ramirez-Sanchez J, Delgado-Hernandez R, Ochoa-Rodriguez E, Verdecia-Reyes Y, Naal Z, Muller AP et al (2014) Antioxidant effects of JM-20 on rat brain mitochondria and synaptosomes: mitoprotection against Ca(2)(+)-induced mitochondrial impairment. Brain Res Bull 109:68–76. https://doi.org/10.1016/j.brainresbull.2014.10.001

    Article  CAS  PubMed  Google Scholar 

  13. Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20(1):84–91

    Article  CAS  PubMed  Google Scholar 

  14. Zhao H, Mayhan WG, Sun H (2008) A modified suture technique produces consistent cerebral infarction in rats. Brain Res 1246:158–166. https://doi.org/10.1016/j.brainres.2008.08.096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lourbopoulos A, Karacostas D, Artemis N, Milonas I, Grigoriadis N (2008) Effectiveness of a new modified intraluminal suture for temporary middle cerebral artery occlusion in rats of various weight. J Neurosci Methods 173(2):225–234. https://doi.org/10.1016/j.jneumeth.2008.06.018

    Article  PubMed  Google Scholar 

  16. Schmid-Elsaesser R, Zausinger S, Hungerhuber E, Baethmann A, Reulen HJ (1998) A critical reevaluation of the intraluminal thread model of focal cerebral ischemia: evidence of inadvertent premature reperfusion and subarachnoid hemorrhage in rats by laser-Doppler flowmetry. Stroke 29(10):2162–2170

    Article  CAS  PubMed  Google Scholar 

  17. Cruz Portela LV, Oses JP, Silveira AL, Schmidt AP, Lara DR, Oliveira Battastini AM, Ramirez G, Vinade L et al (2002) Guanine and adenine nucleotidase activities in rat cerebrospinal fluid. Brain Res 950(1–2):74–78

    Article  PubMed  Google Scholar 

  18. Pegg CC, He C, Stroink AR, Kattner KA, Wang CX (2010) Technique for collection of cerebrospinal fluid from the cisterna magna in rat. J Neurosci Methods 187(1):8–12. https://doi.org/10.1016/j.jneumeth.2009.12.002

    Article  PubMed  Google Scholar 

  19. Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates. Elsevier Academic Press

  20. Peterson GL (1979) Review of the Folin phenol protein quantitation method of Lowry, Rosebrough, Farr and Randall. Anal Biochem 100(2):201–220

    Article  CAS  PubMed  Google Scholar 

  21. Lim CK (1986) HPLC of small molecules; a practical approach, vol 20 practical approach. IRL Press, Oxford

    Google Scholar 

  22. Schmidt AP, Tort AB, Silveira PP, Bohmer AE, Hansel G, Knorr L, Schallenberger C, Dalmaz C et al (2009) The NMDA antagonist MK-801 induces hyperalgesia and increases CSF excitatory amino acids in rats: reversal by guanosine. Pharmacol Biochem Behav 91(4):549–553. https://doi.org/10.1016/j.pbb.2008.09.009

    Article  CAS  PubMed  Google Scholar 

  23. Brouns R, De Vil B, Cras P, De Surgeloose D, Marien P, De Deyn PP (2010) Neurobiochemical markers of brain damage in cerebrospinal fluid of acute ischemic stroke patients. Clin Chem 56(3):451–458. https://doi.org/10.1373/clinchem.2009.134122

    Article  CAS  PubMed  Google Scholar 

  24. Burch JB, Augustine AD, Frieden LA, Hadley E, Howcroft TK, Johnson R, Khalsa PS, Kohanski RA et al (2014) Advances in geroscience: impact on healthspan and chronic disease. J Gerontol A Biol Sci Med Sci 69(Suppl 1):S1–S3. https://doi.org/10.1093/gerona/glu041

    Article  PubMed  PubMed Central  Google Scholar 

  25. Unzeta M, Esteban G, Bolea I, Fogel WA, Ramsay RR, Youdim MB, Tipton KF, Marco-Contelles J (2016) Multi-target directed donepezil-like ligands for Alzheimer’s disease. Front Neurosci 10:205. https://doi.org/10.3389/fnins.2016.00205

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dirnagl U, Simon RP, Hallenbeck JM (2003) Ischemic tolerance and endogenous neuroprotection. Trends Neurosci 26(5):248–254. https://doi.org/10.1016/s0166-2236(03)00071-7

    Article  CAS  PubMed  Google Scholar 

  27. Hutchinson PJ, O'Connell MT, Al-Rawi PG, Kett-White CR, Gupta AK, Maskell LB, Pickard JD, Kirkpatrick PJ (2002) Increases in GABA concentrations during cerebral ischaemia: a microdialysis study of extracellular amino acids. J Neurol Neurosurg Psychiatry 72(1):99–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McCoy MK, Tansey MG (2008) TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation 5:45. https://doi.org/10.1186/1742-2094-5-45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Whiteley W, Jackson C, Lewis S, Lowe G, Rumley A, Sandercock P, Wardlaw J, Dennis M et al (2009) Inflammatory markers and poor outcome after stroke: a prospective cohort study and systematic review of interleukin-6. PLoS Med 6(9):e1000145. https://doi.org/10.1371/journal.pmed.1000145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. De la Calle JL, Paino CL (2002) A procedure for direct lumbar puncture in rats. Brain Res Bull 59(3):245–250

    Article  PubMed  Google Scholar 

  31. Sharma AK, Schultze AE, Cooper DM, Reams RY, Jordan WH, Snyder PW (2006) Development of a percutaneous cerebrospinal fluid collection technique in F-344 rats and evaluation of cell counts and total protein concentrations. Toxicol Pathol 34(4):393–395

    Article  PubMed  Google Scholar 

  32. Memezawa H, Minamisawa H, Smith ML, Siesjo BK (1992) Ischemic penumbra in a model of reversible middle cerebral artery occlusion in the rat. Exp Brain Res 89(1):67–78

    Article  CAS  PubMed  Google Scholar 

  33. Astrup J, Siesjo BK, Symon L (1981) Thresholds in cerebral ischemia—the ischemic penumbra. Stroke 12(6):723–725

    Article  CAS  PubMed  Google Scholar 

  34. Kirino T, Sano K (1984) Selective vulnerability in the gerbil hippocampus following transient ischemia. Acta Neuropathol 62(3):201–208

    Article  CAS  PubMed  Google Scholar 

  35. Petito CK, Morgello S, Felix JC, Lesser ML (1990) The two patterns of reactive astrocytosis in postischemic rat brain. J Cereb Blood Flow Metab 10(6):850–859. https://doi.org/10.1038/jcbfm.1990.141

    Article  CAS  PubMed  Google Scholar 

  36. Zhao H, Sapolsky RM, Steinberg GK (2006) Phosphoinositide-3-kinase/akt survival signal pathways are implicated in neuronal survival after stroke. Mol Neurobiol 34(3):249–270

    Article  CAS  PubMed  Google Scholar 

  37. Cai L, Stevenson J, Geng X, Peng C, Ji X, Xin R, Rastogi R, Sy C et al (2017) Combining Normobaric oxygen with ethanol or hypothermia prevents brain damage from thromboembolic stroke via PKC-Akt-NOX modulation. Mol Neurobiol 54(2):1263–1277. https://doi.org/10.1007/s12035-016-9695-7

    Article  CAS  PubMed  Google Scholar 

  38. Brazil DP, Yang ZZ, Hemmings BA (2004) Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci 29(5):233–242. https://doi.org/10.1016/j.tibs.2004.03.006

    Article  CAS  PubMed  Google Scholar 

  39. Pekny M, Pekna M (2014) Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev 94(4):1077–1098. https://doi.org/10.1152/physrev.00041.2013

    Article  PubMed  Google Scholar 

  40. Anderson MA, Ao Y, Sofroniew MV (2014) Heterogeneity of reactive astrocytes. Neurosci Lett 565:23–29. https://doi.org/10.1016/j.neulet.2013.12.030

    Article  CAS  PubMed  Google Scholar 

  41. Escartin C, Bonvento G (2008) Targeted activation of astrocytes: a potential neuroprotective strategy. Mol Neurobiol 38(3):231–241. https://doi.org/10.1007/s12035-008-8043-y

    Article  CAS  PubMed  Google Scholar 

  42. Lee S, Park JY, Lee WH, Kim H, Park HC, Mori K, Suk K (2009) Lipocalin-2 is an autocrine mediator of reactive astrocytosis. J Neurosci 29(1):234–249. https://doi.org/10.1523/JNEUROSCI.5273-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bi F, Huang C, Tong J, Qiu G, Huang B, Wu Q, Li F, Xu Z et al (2013) Reactive astrocytes secrete lcn2 to promote neuron death. Proc Natl Acad Sci U S A 110(10):4069–4074. https://doi.org/10.1073/pnas.1218497110

    Article  PubMed  PubMed Central  Google Scholar 

  44. Stary CM, Sun X, Ouyang Y, Li L, Giffard RG (2016) miR-29a differentially regulates cell survival in astrocytes from cornu ammonis 1 and dentate gyrus by targeting VDAC1. Mitochondrion 30:248–254. https://doi.org/10.1016/j.mito.2016.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ouyang YB, Voloboueva LA, Xu LJ, Giffard RG (2007) Selective dysfunction of hippocampal CA1 astrocytes contributes to delayed neuronal damage after transient forebrain ischemia. J Neurosci 27(16):4253–4260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-Brazil/Ministerio de Educación Superior (MES)-Cuba projects 140/11 and 092/10, Instituto Nacional de Ciência e Tecnologia para Excitotoxicidade e Neuroproteção (INCTEN)/Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), IBN.Net/CNPq, Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), and the Non-Governmental Organization MEDICUBA-SPAIN. We would like to thank to Dr. Nancy Pavón Fuentes for the scientific advising.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diogo O Souza.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez-Sánchez, J., Pires, E.N.S., Meneghetti, A. et al. JM-20 Treatment After MCAO Reduced Astrocyte Reactivity and Neuronal Death on Peri-infarct Regions of the Rat Brain. Mol Neurobiol 56, 502–512 (2019). https://doi.org/10.1007/s12035-018-1087-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1087-8

Keywords

Navigation