Skip to main content

Advertisement

Log in

Biomarkers in Spinal Cord Injury: from Prognosis to Treatment

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) is considered an incurable condition, having a heterogenous recovery and uncertain prognosis. Therefore, a reliable prediction of the improvement in the acute phase could benefit patients. Physicians are unanimous in insisting that at the initial damage of the spinal cord (SC), the patient should be carefully evaluated in order to help selecting an appropriate neuroprotective treatment. However, currently, neurologic impairment after SCI is measured and classified by functional examination. The identification of prognostic biomarkers of SCI would help to designate SC injured patients and correlate to diagnosis and correct treatment. Some proteins have already been identified as good potential biomarkers of central nervous system injury, both in cerebrospinal fluid (CSF) and blood serum. However, the problem for using them as biomarkers is the way they should be collected, as acquiring CSF through a lumbar puncture is significantly invasive. Remarkably, microRNAs (miRNAs) have emerged as interesting biomarker candidates because of their stability in biological fluids and their tissue specificity. Several miRNAs have been identified to have their expressions altered in SCI in many animal models, making them promising candidates as biomarkers after SCI. Moreover, there are yet no effective therapies for SCI. It is already known that altered lysophospholipids (LPs) signaling are involved in the biology of disorders, such as inflammation. Reports have demonstrated that LPs when locally distributed can regulate SCI repair and key secondary injury processes such as apoptosis and inflammation, and so could become in the future new therapeutic approaches for treating SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ASIA:

American Spinal Injuries Association

BSCB:

blood-spinal cord barrier

BMPs:

bone morphogenetic proteins

BDNF:

brain-derived neurotrophic factor

S100β:

calcium-binding protein S100-beta

CNS:

central nervous system

CSF:

cerebrospinal fluid

COX2:

cyclooxygenase 2

FGF-β:

fibroblast growth factor beta 1

GPCRs:

G protein–coupled receptors

GDNF:

glial cell-derived neurotrophic factor

GFAP:

glial fibrillary acidic protein

IFNγ:

interferon gamma

IGF (I and II):

insulin-like growth factor I and II

IL (1β; 1α and 6):

interleukin-1β; 1α and 6

IL-4R and IL-2Rα:

interleukin receptors

ISNCSCI:

International Standards for Neurological Classification of Spinal Cord Injury

JAK:

Janus-activated kinase

LPA:

Lysophosphatidic acid

LPs:

lysophospholipids

MRI:

magnetic resonance imaging

mTOR:

mechanistic target of rapamycin

miRNA:

microRNA

MAP-2:

microtubule-associated protein 2

MOG:

myelin-oligodendrocyte glycoprotein

NFL and NFH:

neurofilament proteins (light and heavy)

NF-κB:

factor kappa B

PTEN:

phosphatase and tensin homolog

PDGF:

platelet-derive growth factor

S1P:

Sphingosine-1 phosphate

SBDPs:

αII-spectrin breakdown products

SC:

spinal cord

SCI:

spinal cord injury

STAT:

signal transducer and activation of transcription family

SOCS-3:

suppressor of cytokine signaling 3

TGF-β:

transforming growth factor-β

TNF-α:

tumor necrosis factor-α

VEGF:

vascular endothelial growth factor

VGF:

inducible nerve growth factor

References

  1. Mansini M (2001) Estimativa da incidência e prevalência de lesão medular no Brasil. J Bras Neurol 12(2):97–100

    Google Scholar 

  2. Martins F, Freitas F, Martins L, Dartigues JF, Barat M (1998) Spinal cord injuries—epidemiology in Portugal's central region. Spinal Cord 36(8):574–578. https://doi.org/10.1038/sj.sc.3100657

    Article  PubMed  CAS  Google Scholar 

  3. Bareyre FM, Schwab ME (2003) Inflammation, degeneration and regeneration in the injured spinal cord: insights from DNA microarrays. Trends Neurosci 26(10):555–563. https://doi.org/10.1016/j.tins.2003.08.004

    Article  PubMed  CAS  Google Scholar 

  4. Yunta M, Nieto-Diaz M, Esteban FJ, Caballero-Lopez M, Navarro-Ruiz R, Reigada D, Pita-Thomas DW, del Aguila A et al (2012) MicroRNA dysregulation in the spinal cord following traumatic injury. PLoS One 7(4):e34534. https://doi.org/10.1371/journal.pone.0034534PONE-D-11-24982

  5. Liu NK, Wang XF, QB L, Xu XM (2009) Altered microRNA expression following traumatic spinal cord injury. Exp Neurol 219(2):424–429. https://doi.org/10.1016/j.expneurol.2009.06.015S0014-4886(09)00241-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Kim YH, Ha KY, Kim SI (2017) Spinal cord injury and related clinical trials. Clin Orthop Surg 9(1):1–9. https://doi.org/10.4055/cios.2017.9.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kwon BK, Tetzlaff W, Grauer JN, Beiner J, Vaccaro AR (2004) Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J 4(4):451–464. https://doi.org/10.1016/j.spinee.2003.07.007S1529943003004935

    Article  PubMed  Google Scholar 

  8. Ha KY, Carragee E, Cheng I, Kwon SE, Kim YH (2011) Pregabalin as a neuroprotector after spinal cord injury in rats: biochemical analysis and effect on glial cells. J Korean Med Sci 26(3):404–411. https://doi.org/10.3346/jkms.2011.26.3.404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Park E, Velumian AA, Fehlings MG (2004) The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration. J Neurotrauma 21(6):754–774. https://doi.org/10.1089/0897715041269641

    Article  PubMed  Google Scholar 

  10. Beattie MS, Hermann GE, Rogers RC, Bresnahan JC (2002) Cell death in models of spinal cord injury. Prog Brain Res 137:37–47. https://doi.org/10.1016/S0079-6123(02)37006-7

    Article  PubMed  Google Scholar 

  11. Totoiu MO, Keirstead HS (2005) Spinal cord injury is accompanied by chronic progressive demyelination. J Comp Neurol 486(4):373–383. https://doi.org/10.1002/cne.20517

    Article  PubMed  Google Scholar 

  12. Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49(6):377–391. https://doi.org/10.1016/S0361-9230(99)00072-6

    Article  PubMed  CAS  Google Scholar 

  13. Song G, Cechvala C, Resnick DK, Dempsey RJ, Rao VL (2001) GeneChip analysis after acute spinal cord injury in rat. J Neurochem 79(4):804–815

    Article  PubMed  CAS  Google Scholar 

  14. Di Giovanni S, Knoblach SM, Brandoli C, Aden SA, Hoffman EP, Faden AI (2003) Gene profiling in spinal cord injury shows role of cell cycle in neuronal death. Ann Neurol 53(4):454–468. https://doi.org/10.1002/ana.10472

    Article  PubMed  CAS  Google Scholar 

  15. Horner PJ, Power AE, Kempermann G, Kuhn HG, Palmer TD, Winkler J, Thal LJ, Gage FH (2000) Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J Neurosci 20(6):2218–2228

    Article  PubMed  CAS  Google Scholar 

  16. Pineau I, Lacroix S (2007) Proinflammatory cytokine synthesis in the injured mouse spinal cord: Multiphasic expression pattern and identification of the cell types involved. J Comp Neurol 500(2):267–285. https://doi.org/10.1002/cne.21149

    Article  PubMed  CAS  Google Scholar 

  17. Nakamura M, Houghtling RA, MacArthur L, Bayer BM, Bregman BS (2003) Differences in cytokine gene expression profile between acute and secondary injury in adult rat spinal cord. Exp Neurol 184(1):313–325. https://doi.org/10.1016/S0014-4886(03)00361-3

    Article  PubMed  CAS  Google Scholar 

  18. Ahuja CS, Fehlings M (2016) Concise review: bridging the gap: novel neuroregenerative and neuroprotective strategies in spinal cord injury. Stem Cells Transl Med 5(7):914–924. https://doi.org/10.5966/sctm.2015-0381sctm.2015-0381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Schanne FA, Kane AB, Young EE, Farber JL (1979) Calcium dependence of toxic cell death: a final common pathway. Science 206(4419):700–702. https://doi.org/10.1126/science.386513

    Article  PubMed  CAS  Google Scholar 

  20. Carmel JB, Galante A, Soteropoulos P, Tolias P, Recce M, Young W, Hart RP (2001) Gene expression profiling of acute spinal cord injury reveals spreading inflammatory signals and neuron loss. Physiol Genomics 7(2):201–213. https://doi.org/10.1152/physiolgenomics.00074.200100074.2001

    Article  PubMed  CAS  Google Scholar 

  21. Liu CL, Jin AM, Tong BH (2003) Detection of gene expression pattern in the early stage after spinal cord injury by gene chip. Chin J Traumatol 6(1):18–22

    PubMed  CAS  Google Scholar 

  22. Schwaiger FW, Hager G, Schmitt AB, Horvat A, Streif R, Spitzer C, Gamal S, Breuer S et al (2000) Peripheral but not central axotomy induces changes in Janus kinases (JAK) and signal transducers and activators of transcription (STAT). Eur J Neurosci 12(4):1165–1176. https://doi.org/10.1046/j.1460-9568.2000.00005.x

  23. Suzuki S, Tanaka K, Nogawa S, Dembo T, Kosakai A, Fukuuchi Y (2001) Phosphorylation of signal transducer and activator of transcription-3 (Stat3) after focal cerebral ischemia in rats. Exp Neurol 170(1):63–71. https://doi.org/10.1006/exnr.2001.7701S0014-4886(01)97701-5

    Article  PubMed  CAS  Google Scholar 

  24. Huber AB, Weinmann O, Brosamle C, Oertle T, Schwab ME (2002) Patterns of Nogo mRNA and protein expression in the developing and adult rat and after CNS lesions. J Neurosci 22(9):3553–3567

    Article  PubMed  CAS  Google Scholar 

  25. Ahuja CS, Wilson JR, Nori S, Kotter MRN, Druschel C, Curt A, Fehlings MG (2017) Traumatic spinal cord injury. Nat Rev Dis Primers 3:17018. https://doi.org/10.1038/nrdp.2017.18nrdp201718

    Article  PubMed  Google Scholar 

  26. Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24(9):2143–2155. https://doi.org/10.1523/JNEUROSCI.3547-03.200424/9/2143

    Article  PubMed  CAS  Google Scholar 

  27. Fitch MT, Silver J (2008) CNS injury, glial scars, and inflammation: inhibitory extracellular matrices and regeneration failure. Exp Neurol 209(2):294–301. https://doi.org/10.1016/j.expneurol.2007.05.014

    Article  PubMed  CAS  Google Scholar 

  28. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32(12):638–647. https://doi.org/10.1016/j.tins.2009.08.002S0166-2236(09)00153-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35. https://doi.org/10.1007/s00401-009-0619-8

    Article  PubMed  Google Scholar 

  30. Herrmann JE, Imura T, Song B, Qi J, Ao Y, Nguyen TK, Korsak RA, Takeda K et al (2008) STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J Neurosci 28(28):7231–7243. https://doi.org/10.1523/JNEUROSCI.1709-08.200828/28/7231

  31. Okada S, Nakamura M, Katoh H, Miyao T, Shimazaki T, Ishii K, Yamane J, Yoshimura A et al (2006) Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat Med 12(7):829–834. https://doi.org/10.1038/nm1425

  32. Wanner IB, Anderson MA, Song B, Levine J, Fernandez A, Gray-Thompson Z, Ao Y, Sofroniew MV (2013) Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J Neurosci 33(31):12870–12886. https://doi.org/10.1523/JNEUROSCI.2121-13.201333/31/12870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Norenberg MD, Smith J, Marcillo A (2004) The pathology of human spinal cord injury: defining the problems. J Neurotrauma 21(4):429–440. https://doi.org/10.1089/089771504323004575

    Article  PubMed  Google Scholar 

  34. Fichtenbaum J, Kirshblum S, Ruppert L, Flaum T, Spill GR, Mukherjee D (2017) Prognosis disclosure in spinal cord injury. PM R 9(1):76–82. https://doi.org/10.1016/j.pmrj.2016.11.007

    Article  PubMed  Google Scholar 

  35. Kramer JLK, Geisler F, Ramer L, Plunet W, Cragg JJ (2017) Open access platforms in spinal cord injury: existing clinical trial data to predict and improve outcomes. Neurorehabil Neural Repair 31(5):399–401. https://doi.org/10.1177/1545968316688801

    Article  PubMed  Google Scholar 

  36. Hulme CH, Brown SJ, Fuller HR, Riddell J, Osman A, Chowdhury J, Kumar N, Johnson WE et al (2017) The developing landscape of diagnostic and prognostic biomarkers for spinal cord injury in cerebrospinal fluid and blood. Spinal Cord 55(2):114–125. https://doi.org/10.1038/sc.2016.174sc2016174

  37. Pouw MH, Hosman AJ, van Middendorp JJ, Verbeek MM, Vos PE, van de Meent H (2009) Biomarkers in spinal cord injury. Spinal Cord 47(7):519–525. https://doi.org/10.1038/sc.2008.176sc2008176

    Article  PubMed  CAS  Google Scholar 

  38. Martinez-Perez R, Munarriz PM, Paredes I, Cotrina J, Lagares A (2017) Cervical spinal cord injury without computed tomography evidence of trauma in adults: magnetic resonance imaging prognostic factors. World Neurosurg 99:192–199. https://doi.org/10.1016/j.wneu.2016.12.005

    Article  PubMed  Google Scholar 

  39. Lammertse D, Dungan D, Dreisbach J, Falci S, Flanders A, Marino R, Schwartz E (2007) Neuroimaging in traumatic spinal cord injury: an evidence-based review for clinical practice and research. J Spinal Cord Med 30(3):205–214. https://doi.org/10.1080/10790268.2007.11753928

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lubieniecka JM, Streijger F, Lee JH, Stoynov N, Liu J, Mottus R, Pfeifer T, Kwon BK et al (2011) Biomarkers for severity of spinal cord injury in the cerebrospinal fluid of rats. PLoS One 6(4):e19247. https://doi.org/10.1371/journal.pone.0019247PONE-D-10-06265

  41. Botelho RV, Albuquerque LDG, Bastianello R, Junior AAA (2014) Epidemiology of traumatic spinal injuries in Brazil: systematic review. Arq Bras Neurocir 33(2):100–106

    Article  Google Scholar 

  42. Hawryluk GW, Rowland J, Kwon BK, Fehlings MG (2008) Protection and repair of the injured spinal cord: a review of completed, ongoing, and planned clinical trials for acute spinal cord injury. Neurosurg Focus 25(5):E14. https://doi.org/10.3171/FOC.2008.25.11.E14

    Article  PubMed  Google Scholar 

  43. Nishio Y, Koda M, Kamada T, Someya Y, Kadota R, Mannoji C, Miyashita T, Okada S et al (2007) Granulocyte colony-stimulating factor attenuates neuronal death and promotes functional recovery after spinal cord injury in mice. J Neuropathol Exp Neurol 66(8):724–731. https://doi.org/10.1097/nen.0b013e318125717600005072-200708000-00006

  44. Okano H (2009) Strategies toward CNS-regeneration using induced pluripotent stem cells. Genome Inform 23(1):217–220

    PubMed  Google Scholar 

  45. Silva NA, Sousa N, Reis RL, Salgado AJ (2014) From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol 114:25–57. https://doi.org/10.1016/j.pneurobio.2013.11.002S0301-0082(13)00119-6

    Article  PubMed  Google Scholar 

  46. Yang Z, Bramlett HM, Moghieb A, Yu D, Wang P, Lin F, Bauer C, Selig TM et al (2017) Temporal profile and severity correlation of a panel of rat spinal cord injury protein biomarkers. Mol Neurobiol. https://doi.org/10.1007/s12035-017-0424-710.1007/s12035-017-0424-7

  47. Laterza OF, Lim L, Garrett-Engele PW, Vlasakova K, Muniappa N, Tanaka WK, Johnson JM, Sina JF et al (2009) Plasma microRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem 55(11):1977–1983. https://doi.org/10.1373/clinchem.2009.131797clinchem.2009.131797

  48. Kwon BK, Stammers AM, Belanger LM, Bernardo A, Chan D, Bishop CM, Slobogean GP, Zhang H et al (2010) Cerebrospinal fluid inflammatory cytokines and biomarkers of injury severity in acute human spinal cord injury. J Neurotrauma 27(4):669–682. https://doi.org/10.1089/neu.2009.1080

  49. Kuhle J, Gaiottino J, Leppert D, Petzold A, Bestwick JP, Malaspina A, Lu CH, Dobson R et al (2015) Serum neurofilament light chain is a biomarker of human spinal cord injury severity and outcome. J Neurol Neurosurg Psychiatry 86(3):273–279. https://doi.org/10.1136/jnnp-2013-307454jnnp-2013-307454

  50. Yokobori S, Zhang Z, Moghieb A, Mondello S, Gajavelli S, Dietrich WD, Bramlett H, Hayes RL et al (2015) Acute diagnostic biomarkers for spinal cord injury: Review of the literature and preliminary research report. World Neurosurg 83(5):867–878. https://doi.org/10.1016/j.wneu.2013.03.012S1878-8750(13)00459-2

  51. Kwon BK, Streijger F, Fallah N, Noonan VK, Belanger LM, Ritchie L, Paquette SJ, Ailon T et al (2017) Cerebrospinal fluid biomarkers to stratify injury severity and predict outcome in human traumatic spinal cord injury. J Neurotrauma 34(3):567–580. https://doi.org/10.1089/neu.2016.4435

  52. Guez M, Hildingsson C, Rosengren L, Karlsson K, Toolanen G (2003) Nervous tissue damage markers in cerebrospinal fluid after cervical spine injuries and whiplash trauma. J Neurotrauma 20(9):853–858. https://doi.org/10.1089/089771503322385782

    Article  PubMed  Google Scholar 

  53. Ahadi R, Khodagholi F, Daneshi A, Vafaei A, Mafi AA, Jorjani M (2015) Diagnostic value of serum levels of GFAP, pNF-H, and NSE compared with clinical findings in severity assessment of human traumatic spinal cord injury. Spine (Phila Pa 1976) 40(14):E823–E830. https://doi.org/10.1097/BRS.0000000000000654

    Article  Google Scholar 

  54. Pouw MH, Kwon BK, Verbeek MM, Vos PE, van Kampen A, Fisher CG, Street J, Paquette SJ et al (2014) Structural biomarkers in the cerebrospinal fluid within 24 h after a traumatic spinal cord injury: a descriptive analysis of 16 subjects. Spinal Cord 52(6):428–433. https://doi.org/10.1038/sc.2014.26sc201426

  55. Ungureanu D, Iencean SM, Dimitriu D, A. S. I. A T (2014) Determination of the phosphorylated neurofilament subunit NF-H (pNF-H) in cerebro-spinal fluid as biomarker in acute traumatic spinal cord injuries. Rev Romana Med Lab 22(3):377–386. https://doi.org/10.2478/rrlm-2014-0029

    Article  Google Scholar 

  56. Wolf H, Krall C, Pajenda G, Leitgeb J, Bukaty AJ, Hajdu S, Sarahrudi K (2014) Alterations of the biomarker S-100B and NSE in patients with acute vertebral spine fractures. Spine J 14(12):2918–2922. https://doi.org/10.1016/j.spinee.2014.04.027S1529-9430(14)00460-4

    Article  PubMed  Google Scholar 

  57. Biglari B, Swing T, Child C, Buchler A, Westhauser F, Bruckner T, Ferbert T, Jurgen Gerner H et al (2015) A pilot study on temporal changes in IL-1beta and TNF-alpha serum levels after spinal cord injury: the serum level of TNF-alpha in acute SCI patients as a possible marker for neurological remission. Spinal Cord 53(7):510–514. https://doi.org/10.1038/sc.2015.28sc201528

  58. Davies AL, Hayes KC, Dekaban GA (2007) Clinical correlates of elevated serum concentrations of cytokines and autoantibodies in patients with spinal cord injury. Arch Phys Med Rehabil 88(11):1384–1393. https://doi.org/10.1016/j.apmr.2007.08.004

    Article  PubMed  Google Scholar 

  59. Hajdukova L, Sobek O, Prchalova D, Bilkova Z, Koudelkova M, Lukaskova J, Matuchova I (2015) Biomarkers of brain damage: S100B and NSE concentrations in cerebrospinal fluid—a normative study. Biomed Res Int 2015:1–7. https://doi.org/10.1155/2015/379071

    Article  CAS  Google Scholar 

  60. Merisson E, Mattsson N, Zetterberg H, Blennow K, Pikwer A, Mehmedagic I, Acosta S, Akeson J (2016) Total-tau and neurofilament light in CSF reflect spinal cord ischaemia after endovascular aortic repair. Neurochem Int 93:1–5. https://doi.org/10.1016/j.neuint.2015.12.003S0197-0186(15)30072-3

    Article  PubMed  CAS  Google Scholar 

  61. Basu S, Aballa TC, Ferrell SM, Lynne CM, Brackett NL (2004) Inflammatory cytokine concentrations are elevated in seminal plasma of men with spinal cord injuries. J Androl 25(2):250–254. https://doi.org/10.1002/j.1939-4640.2004.tb02785.x

    Article  PubMed  CAS  Google Scholar 

  62. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297. https://doi.org/10.1016/S0092-8674(04)00045-5

    Article  PubMed  CAS  Google Scholar 

  63. Farh KK, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP, Burge CB, Bartel DP (2005) The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science 310(5755):1817–1821. https://doi.org/10.1126/science.1121158

    Article  PubMed  CAS  Google Scholar 

  64. Hutchison ER, Okun E, Mattson MP (2009) The therapeutic potential of microRNAs in nervous system damage, degeneration, and repair. NeuroMolecular Med 11(3):153–161. https://doi.org/10.1007/s12017-009-8086-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. van Rossum IA, Vos S, Handels R, Visser PJ (2010) Biomarkers as predictors for conversion from mild cognitive impairment to Alzheimer-type dementia: implications for trial design. J Alzheimers Dis 20(3):881–891. https://doi.org/10.3233/JAD-2010-091606M6P50450707K2612

    Article  PubMed  Google Scholar 

  66. Gasparri ML, Casorelli A, Bardhi E, Besharat AR, Savone D, Ruscito I, Farooqi AA, Papadia A et al (2017) Beyond circulating microRNA biomarkers: urinary microRNAs in ovarian and breast cancer. Tumour Biol 39(5):1010428317695525. https://doi.org/10.1177/1010428317695525

  67. Lu Q, Yan Q, Xu F, Li Y, Zhao W, Wu C, Wang Y, Lang X (2017) MicroRNA-873 is a potential serum biomarker for the detection of ectopic pregnancy. Cell Physiol Biochem 41(6):2513–2522. https://doi.org/10.1159/000475946000475946

    Article  PubMed  CAS  Google Scholar 

  68. Son JC, Jeong HO, Park D, No SG, Lee EK, Lee J, Chung HY (2017) miR-10a and miR-204 as a potential prognostic indicator in low-grade gliomas. Cancer Inform. https://doi.org/10.1177/117693511770287810.1177_1176935117702878

  69. Yu Q, Xu C, Yuan W, Wang C, Zhao P, Chen L, Ma J (2017) Evaluation of plasma microRNAs as diagnostic and prognostic biomarkers in pancreatic adenocarcinoma: miR-196a and miR-210 could be negative and positive prognostic markers, respectively. Biomed Res Int 2017:1–10. https://doi.org/10.1155/2017/6495867

    Article  CAS  Google Scholar 

  70. Nakanishi K, Nakasa T, Tanaka N, Ishikawa M, Yamada K, Yamasaki K, Kamei N, Izumi B et al (2010) Responses of microRNAs 124a and 223 following spinal cord injury in mice. Spinal Cord 48(3):192–196. https://doi.org/10.1038/sc.2009.89sc200989

  71. Liu G, Keeler BE, Zhukareva V, Houle JD (2010) Cycling exercise affects the expression of apoptosis-associated microRNAs after spinal cord injury in rats. Exp Neurol 226(1):200–206. https://doi.org/10.1016/j.expneurol.2010.08.032S0014-4886(10)00331-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Liu G, Detloff MR, Miller KN, Santi L, Houle JD (2012) Exercise modulates microRNAs that affect the PTEN/mTOR pathway in rats after spinal cord injury. Exp Neurol 233(1):447–456. https://doi.org/10.1016/j.expneurol.2011.11.018S0014-4886(11)00422-5

    Article  PubMed  CAS  Google Scholar 

  73. Hachisuka S, Kamei N, Ujigo S, Miyaki S, Yasunaga Y, Ochi M (2014) Circulating microRNAs as biomarkers for evaluating the severity of acute spinal cord injury. Spinal Cord 52(8):596–600. https://doi.org/10.1038/sc.2014.86sc201486

    Article  PubMed  CAS  Google Scholar 

  74. Jin L, Wu Z, Xu W, Hu X, Zhang J, Xue Z, Cheng L (2014) Identifying gene expression profile of spinal cord injury in rat by bioinformatics strategy. Mol Biol Rep 41(5):3169–3177. https://doi.org/10.1007/s11033-014-3176-8

    Article  PubMed  CAS  Google Scholar 

  75. Ning B, Gao L, Liu RH, Liu Y, Zhang NS, Chen ZY (2014) microRNAs in spinal cord injury: Potential roles and therapeutic implications. Int J Biol Sci 10(9):997–1006. https://doi.org/10.7150/ijbs.9058ijbsv10p0997

    Article  PubMed  PubMed Central  Google Scholar 

  76. Jee MK, Jung JS, Choi JI, Jang JA, Kang KS, Im YB, Kang SK (2012a) MicroRNA 486 is a potentially novel target for the treatment of spinal cord injury. Brain 135(Pt 4):1237–1252. https://doi.org/10.1093/brain/aws047aws047

    Article  PubMed  Google Scholar 

  77. Strickland ER, Hook MA, Balaraman S, Huie JR, Grau JW, Miranda RC (2011) MicroRNA dysregulation following spinal cord contusion: implications for neural plasticity and repair. Neuroscience 186:146–160. https://doi.org/10.1016/j.neuroscience.2011.03.063S0306-4522(11)00371-X

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Ziu M, Fletcher L, Savage JG, Jimenez DF, Digicaylioglu M, Bartanusz V (2014) Spatial and temporal expression levels of specific microRNAs in a spinal cord injury mouse model and their relationship to the duration of compression. Spine J 14(2):353–360. https://doi.org/10.1016/j.spinee.2013.08.015S1529-9430(13)01462-9

  79. Smirnova L, Grafe A, Seiler A, Schumacher S, Nitsch R, Wulczyn FG (2005) Regulation of miRNA expression during neural cell specification. Eur J Neurosci 21(6):1469–1477

    Article  PubMed  Google Scholar 

  80. Dugas JC, Cuellar TL, Scholze A, Ason B, Ibrahim A, Emery B, Zamanian JL, Foo LC et al (2010) Dicer1 and miR-219 are required for normal oligodendrocyte differentiation and myelination. Neuron 65(5):597–611. https://doi.org/10.1016/j.neuron.2010.01.027S0896-6273(10)00053-X

  81. Zhao X, He X, Han X, Yu Y, Ye F, Chen Y, Hoang T, Xu X et al (2010) MicroRNA-mediated control of oligodendrocyte differentiation. Neuron 65(5):612–626. https://doi.org/10.1016/j.neuron.2010.02.018S0896-6273(10)00135-2

  82. Jee MK, Jung JS, Im YB, Jung SJ, Kang SK (2012b) Silencing of miR20a is crucial for Ngn1-mediated neuroprotection in injured spinal cord. Hum Gene Ther 23(5):508–520. https://doi.org/10.1089/hum.2011.121

    Article  PubMed  CAS  Google Scholar 

  83. Ujigo S, Kamei N, Hadoush H, Fujioka Y, Miyaki S, Nakasa T, Tanaka N, Nakanishi K et al (2014) Administration of microRNA-210 promotes spinal cord regeneration in mice. Spine (Phila Pa 1976) 39(14):1099–1107. https://doi.org/10.1097/BRS.0000000000000356

  84. Tigchelaar S, Streijger F, Sinha S, Flibotte S, Manouchehri N, So K, Shortt K, Okon E et al (2017) Serum microRNAs reflect injury severity in a large animal model of thoracic spinal cord injury. Sci Rep 7(1):1376. https://doi.org/10.1038/s41598-017-01299-x10.1038/s41598-017-01299-x

  85. Chang JC, Kundranda M (2017) Novel diagnostic and predictive biomarkers in pancreatic adenocarcinoma. Int J Mol Sci 18(3):E667. https://doi.org/10.3390/ijms18030667ijms18030667

    Article  PubMed  Google Scholar 

  86. Chou CK, Liu RT, Kang HY (2017) MicroRNA-146b: A novel biomarker and therapeutic target for human papillary thyroid cancer. Int J Mol Sci 18(3):E636. https://doi.org/10.3390/ijms18030636ijms18030636

    Article  PubMed  Google Scholar 

  87. Tang Y, Zhao S, Wang J, Li D, Ren Q (2017) Plasma miR-122 as a potential diagnostic and prognostic indicator in human glioma. Neurol Sci 38(6):1087–1092. https://doi.org/10.1007/s10072-017-2912-y10.1007/s10072-017-2912-y

    Article  PubMed  Google Scholar 

  88. JZ H, Huang JH, Zeng L, Wang G, Cao M, Lu HB (2013) Anti-apoptotic effect of microRNA-21 after contusion spinal cord injury in rats. J Neurotrauma 30(15):1349–1360. https://doi.org/10.1089/neu.2012.2748

    Article  Google Scholar 

  89. Hu JR, Lv GH, Yin BL (2013) Altered microRNA expression in the ischemic-reperfusion spinal cord with atorvastatin therapy. J Pharmacol Sci 121(4):343–346

    Article  PubMed  CAS  Google Scholar 

  90. Dong J, Lu M, He X, Xu J, Qin J, Cheng Z, Liang B, Wang D et al (2014) Identifying the role of microRNAs in spinal cord injury. Neurol Sci 35(11):1663–1671. https://doi.org/10.1007/s10072-014-1940-0

  91. Nieto-Diaz M, Esteban FJ, Reigada D, Munoz-Galdeano T, Yunta M, Caballero-Lopez M, Navarro-Ruiz R, Del Aguila A et al (2014) MicroRNA dysregulation in spinal cord injury: causes, consequences and therapeutics. Front Cell Neurosci 8:53. https://doi.org/10.3389/fncel.2014.00053

  92. Bhalala OG, Pan L, Sahni V, McGuire TL, Gruner K, Tourtellotte WG, Kessler JA (2012) microRNA-21 regulates astrocytic response following spinal cord injury. J Neurosci 32(50):17935–17947. https://doi.org/10.1523/JNEUROSCI.3860-12.201232/50/17935

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Sahni V, Mukhopadhyay A, Tysseling V, Hebert A, Birch D, McGuire TL, Stupp SI, Kessler JA (2010) BMPR1a and BMPR1b signaling exert opposing effects on gliosis after spinal cord injury. J Neurosci 30(5):1839–1855. https://doi.org/10.1523/JNEUROSCI.4459-09.201030/5/1839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Xu Y, An BY, Xi XB, Li ZW, Li FY (2016) MicroRNA-9 controls apoptosis of neurons by targeting monocyte chemotactic protein-induced protein 1 expression in rat acute spinal cord injury model. Brain Res Bull 121:233–240. https://doi.org/10.1016/j.brainresbull.2016.01.011S0361-9230(16)30011-9

    Article  PubMed  CAS  Google Scholar 

  95. Hong P, Jiang M, Li H (2014) Functional requirement of dicer1 and miR-17-5p in reactive astrocyte proliferation after spinal cord injury in the mouse. Glia 62(12):2044–2060. https://doi.org/10.1002/glia.22725

    Article  PubMed  Google Scholar 

  96. Liu XJ, Zheng XP, Zhang R, Guo YL, Wang JH (2015) Combinatorial effects of miR-20a and miR-29b on neuronal apoptosis induced by spinal cord injury. Int J Clin Exp Pathol 8(4):3811–3818

    PubMed  PubMed Central  CAS  Google Scholar 

  97. Park KK, Liu K, Hu Y, Smith PD, Wang C, Cai B, Xu B, Connolly L et al (2008) Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322(5903):963–966. https://doi.org/10.1126/science.1161566322/5903/963

  98. Letzen BS, Liu C, Thakor NV, Gearhart JD, All AH, Kerr CL (2010) MicroRNA expression profiling of oligodendrocyte differentiation from human embryonic stem cells. PLoS One 5(5):e10480. https://doi.org/10.1371/journal.pone.0010480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Strickland ER, Woller SA, Garraway SM, Hook MA, Grau JW, Miranda RC (2014a) Regulatory effects of intermittent noxious stimulation on spinal cord injury-sensitive microRNAs and their presumptive targets following spinal cord contusion. Front Neural Circuits 8:117. https://doi.org/10.3389/fncir.2014.00117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Strickland ER, Woller SA, Hook MA, Grau JW, Miranda RC (2014b) The association between spinal cord trauma-sensitive miRNAs and pain sensitivity, and their regulation by morphine. Neurochem Int 77:40–49. https://doi.org/10.1016/j.neuint.2014.05.005S0197-0186(14)00121-1

    Article  PubMed  CAS  Google Scholar 

  101. Sakai A, Suzuki H (2014) Emerging roles of microRNAs in chronic pain. Neurochem Int 77:58–67. https://doi.org/10.1016/j.neuint.2014.05.010S0197-0186(14)00132-6

    Article  PubMed  CAS  Google Scholar 

  102. Favereaux A, Thoumine O, Bouali-Benazzouz R, Roques V, Papon MA, Salam SA, Drutel G, Leger C et al (2011) Bidirectional integrative regulation of Cav1.2 calcium channel by microRNA miR-103: role in pain. EMBO J 30(18):3830–3841. https://doi.org/10.1038/emboj.2011.249emboj2011249

  103. Fossat P, Dobremez E, Bouali-Benazzouz R, Favereaux A, Bertrand SS, Kilk K, Leger C, Cazalets JR et al (2010) Knockdown of L calcium channel subtypes: differential effects in neuropathic pain. J Neurosci 30(3):1073–1085. https://doi.org/10.1523/JNEUROSCI.3145-09.201030/3/1073

  104. Zou D, Chen Y, Han Y, Lv C, Tu G (2014) Overexpression of microRNA-124 promotes the neuronal differentiation of bone marrow-derived mesenchymal stem cells. Neural Regen Res 9(12):1241–1248. https://doi.org/10.4103/1673-5374.135333NRR-9-1241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Zhao Y, Jiang H, Liu XW, Xiang LB, Zhou DP, Chen JT (2015a) MiR-124 promotes bone marrow mesenchymal stem cells differentiation into neurogenic cells for accelerating recovery in the spinal cord injury. Tissue Cell 47(2):140–146. https://doi.org/10.1016/j.tice.2015.01.007S0040-8166(15)00014-2

    Article  PubMed  CAS  Google Scholar 

  106. Zhao Y, Zhang H, Zhang D, Yu CY, Zhao XH, Liu FF, Bian GL, Ju G et al (2015b) Loss of microRNA-124 expression in neurons in the peri-lesion area in mice with spinal cord injury. Neural Regen Res 10(7):1147–1152. https://doi.org/10.4103/1673-5374.156983NRR-10-1147

  107. Xu W, Li P, Qin K, Wang X, Jiang X (2012) miR-124 regulates neural stem cells in the treatment of spinal cord injury. Neurosci Lett 529(1):12–17. https://doi.org/10.1016/j.neulet.2012.09.025S0304-3940(12)01243-8

    Article  PubMed  CAS  Google Scholar 

  108. Louw AM, Kolar MK, Novikova LN, Kingham PJ, Wiberg M, Kjems J, Novikov LN (2016) Chitosan polyplex mediated delivery of miRNA-124 reduces activation of microglial cells in vitro and in rat models of spinal cord injury. Nanomedicine 12(3):643–653. https://doi.org/10.1016/j.nano.2015.10.011S1549-9634(15)00201-4

    Article  PubMed  CAS  Google Scholar 

  109. Diaz Quiroz JF, Tsai E, Coyle M, Sehm T, Echeverri K (2014) Precise control of miR-125b levels is required to create a regeneration-permissive environment after spinal cord injury: a cross-species comparison between salamander and rat. Dis Model Mech 7(6):601–611. https://doi.org/10.1242/dmm.014837dmm.014837

    Article  PubMed  PubMed Central  Google Scholar 

  110. Hu J, Zeng L, Huang J, Wang G, Lu H (2015) miR-126 promotes angiogenesis and attenuates inflammation after contusion spinal cord injury in rats. Brain Res 1608:191–202. https://doi.org/10.1016/j.brainres.2015.02.036S0006-8993(15)00136-5

    Article  PubMed  CAS  Google Scholar 

  111. Dharap A, Bowen K, Place R, Li LC, Vemuganti R (2009) Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab 29(4):675–687. https://doi.org/10.1038/jcbfm.2008.157jcbfm2008157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Alam MM, O'Neill LA (2011) MicroRNAs and the resolution phase of inflammation in macrophages. Eur J Immunol 41(9):2482–2485. https://doi.org/10.1002/eji.201141740

    Article  PubMed  CAS  Google Scholar 

  113. Iyer A, Zurolo E, Prabowo A, Fluiter K, Spliet WG, van Rijen PC, Gorter JA, Aronica E (2012) MicroRNA-146a: a key regulator of astrocyte-mediated inflammatory response. PLoS One 7(9):e44789. https://doi.org/10.1371/journal.pone.0044789PONE-D-12-15409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Yi J, Wang D, Niu X, Hu J, Zhou Y, Li Z (2015) MicroRNA-155 deficiency suppresses Th17 cell differentiation and improves locomotor recovery after spinal cord injury. Scand J Immunol 81(5):284–290. https://doi.org/10.1111/sji.12276

    Article  PubMed  CAS  Google Scholar 

  115. Tan Y, Yang J, Xiang K, Tan Q, Guo Q (2015) Suppression of microRNA-155 attenuates neuropathic pain by regulating SOCS1 signalling pathway. Neurochem Res 40(3):550–560. https://doi.org/10.1007/s11064-014-1500-2

    Article  PubMed  CAS  Google Scholar 

  116. Hutchison ER, Kawamoto EM, Taub DD, Lal A, Abdelmohsen K, Zhang Y, Wood WH III, Lehrmann E et al (2013) Evidence for miR-181 involvement in neuroinflammatory responses of astrocytes. Glia 61(7):1018–1028. https://doi.org/10.1002/glia.22483

  117. Xie W, Li M, Xu N, Lv Q, Huang N, He J, Zhang Y (2013) MiR-181a regulates inflammation responses in monocytes and macrophages. PLoS One 8(3):e58639. https://doi.org/10.1371/journal.pone.0058639PONE-D-12-33182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Shi G, Shi J, Liu K, Liu N, Wang Y, Fu Z, Ding J, Jia L et al (2013) Increased miR-195 aggravates neuropathic pain by inhibiting autophagy following peripheral nerve injury. Glia 61(4):504–512. https://doi.org/10.1002/glia.22451

  119. Yu DS, Lv G, Mei XF, Cao Y, Wang YF, Wang YS, Bi YL (2014) MiR-200c regulates ROS-induced apoptosis in murine BV-2 cells by targeting FAP-1. Spinal Cord. https://doi.org/10.1038/sc.2014.185sc2014185

  120. Li L, Zhao G (2016) Downregulation of microRNA-218 relieves neuropathic pain by regulating suppressor of cytokine signaling 3. Int J Mol Med 37(3):851–858. https://doi.org/10.3892/ijmm.2016.2455

    Article  PubMed  CAS  Google Scholar 

  121. Shin D, Shin JY, McManus MT, Ptacek LJ, Fu YH (2009) Dicer ablation in oligodendrocytes provokes neuronal impairment in mice. Ann Neurol 66(6):843–857. https://doi.org/10.1002/ana.21927

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Izumi B, Nakasa T, Tanaka N, Nakanishi K, Kamei N, Yamamoto R, Nakamae T, Ohta R et al (2011) MicroRNA-223 expression in neutrophils in the early phase of secondary damage after spinal cord injury. Neurosci Lett 492(2):114–118. https://doi.org/10.1016/j.neulet.2011.01.068S0304-3940(11)00114-5

  123. He F, Shi E, Yan L, Li J, Jiang X (2015) Inhibition of micro-ribonucleic acid-320 attenuates neurologic injuries after spinal cord ischemia. J Thorac Cardiovasc Surg 150(2):398–406. https://doi.org/10.1016/j.jtcvs.2015.03.066

    Article  PubMed  CAS  Google Scholar 

  124. Shi X, Yan C, Liu B, Yang C, Nie X, Wang X, Zheng J, Wang Y et al (2015) miR-381 regulates neural stem cell proliferation and differentiation via regulating Hes1 expression. PLoS One 10(10):e0138973. https://doi.org/10.1371/journal.pone.0138973PONE-D-15-35570

  125. Medina PP, Slack FJ (2009) Inhibiting microRNA function in vivo. Nat Methods 6(1):37–38. https://doi.org/10.1038/nmeth0109-37

    Article  PubMed  CAS  Google Scholar 

  126. Mirnezami AH, Pickard K, Zhang L, Primrose JN, Packham G (2009) MicroRNAs: key players in carcinogenesis and novel therapeutic targets. Eur J Surg Oncol 35(4):339–347. https://doi.org/10.1016/j.ejso.2008.06.006

    Article  PubMed  CAS  Google Scholar 

  127. Christopher AF, Kaur RP, Kaur G, Kaur A, Gupta V, Bansal P (2016) MicroRNA therapeutics: discovering novel targets and developing specific therapy. Perspect Clin Res 7(2):68–74. https://doi.org/10.4103/2229-3485.179431

    Article  PubMed  PubMed Central  Google Scholar 

  128. Oyinbo CA (2011) Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp (Wars) 71(2):281–299

    Google Scholar 

  129. Anwar MA, Al Shehabi TS, Eid AH (2016) Inflammogenesis of secondary spinal cord injury. Front Cell Neurosci 10:98. https://doi.org/10.3389/fncel.2016.00098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Wang T, Yuan W, Liu Y, Zhang Y, Wang Z, Chen X, Feng S, Xiu Y et al (2015) miR-142-3p is a potential therapeutic target for sensory function recovery of spinal cord injury. Med Sci Monit 21:2553–2556. https://doi.org/10.12659/MSM.894098894098

  131. Mar FM, da Silva TF, Morgado MM, Rodrigues LG, Rodrigues D, Pereira MI, Marques A, Sousa VF et al (2016) Myelin lipids inhibit axon regeneration following spinal cord injury: a novel perspective for therapy. Mol Neurobiol 53(2):1052–1064. https://doi.org/10.1007/s12035-014-9072-310.1007/s12035-014-9072-3

  132. Ishii I, Fukushima N, Ye X, Chun J (2004) Lysophospholipid receptors: signaling and biology. Annu Rev Biochem 73(1):321–354. https://doi.org/10.1146/annurev.biochem.73.011303.073731

    Article  PubMed  CAS  Google Scholar 

  133. Fukushima N, Weiner JA, Chun J (2000) Lysophosphatidic acid (LPA) is a novel extracellular regulator of cortical neuroblast morphology. Dev Biol 228(1):6–18. https://doi.org/10.1006/dbio.2000.9930

    Article  PubMed  CAS  Google Scholar 

  134. Kingsbury MA, Rehen SK, Contos JJ, Higgins CM, Chun J (2003) Non-proliferative effects of lysophosphatidic acid enhance cortical growth and folding. Nat Neurosci 6(12):1292–1299. https://doi.org/10.1038/nn1157

    Article  PubMed  CAS  Google Scholar 

  135. Gardell SE, Dubin AE, Chun J (2006) Emerging medicinal roles for lysophospholipid signaling. Trends Mol Med 12(2):65–75. https://doi.org/10.1016/j.molmed.2005.12.001

    Article  PubMed  CAS  Google Scholar 

  136. Spohr TC, Choi JW, Gardell SE, Herr DR, Rehen SK, Gomes FC, Chun J (2008) Lysophosphatidic acid receptor-dependent secondary effects via astrocytes promote neuronal differentiation. J Biol Chem 283(12):7470–7479. https://doi.org/10.1074/jbc.M707758200

    Article  PubMed  CAS  Google Scholar 

  137. Spohr TC, Dezonne RS, Rehen SK, Gomes FC (2011) Astrocytes treated by lysophosphatidic acid induce axonal outgrowth of cortical progenitors through extracellular matrix protein and epidermal growth factor signaling pathway. J Neurochem 119(1):113–123. https://doi.org/10.1111/j.1471-4159.2011.07421.x

    Article  CAS  Google Scholar 

  138. Spohr TC, Dezonne RS, Rehen SK, Gomes FC (2014) LPA-primed astrocytes induce axonal outgrowth of cortical progenitors by activating PKA signaling pathways and modulating extracellular matrix proteins. Front Cell Neurosci 8:296. https://doi.org/10.3389/fncel.2014.00296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Spohr TC, Dezonne RS, Nones J, Dos Santos Souza C, Einicker-Lamas M, Gomes FC, Rehen SK (2012) Sphingosine 1-phosphate-primed astrocytes enhance differentiation of neuronal progenitor cells. J Neurosci Res 90(10):1892–1902. https://doi.org/10.1002/jnr.23076

    Article  PubMed  CAS  Google Scholar 

  140. Kimura A, Ohmori T, Ohkawa R, Madoiwa S, Mimuro J, Murakami T, Kobayashi E, Hoshino Y et al (2007) Essential roles of sphingosine 1-phosphate/S1P1 receptor axis in the migration of neural stem cells toward a site of spinal cord injury. Stem cells 25(1):115–124. https://doi.org/10.1634/stemcells.2006-0223

  141. Lee KD, Chow WN, Sato-Bigbee C, Graf MR, Graham RS, Colello RJ, Young HF, Mathern BE (2009) FTY720 reduces inflammation and promotes functional recovery after spinal cord injury. J Neurotrauma 26(12):2335–2344. https://doi.org/10.1089/neu.2008.0840

    Article  PubMed  PubMed Central  Google Scholar 

  142. Norimatsu Y, Ohmori T, Kimura A, Madoiwa S, Mimuro J, Seichi A, Yatomi Y, Hoshino Y et al (2012) FTY720 improves functional recovery after spinal cord injury by primarily nonimmunomodulatory mechanisms. Am J Pathol 180(4):1625–1635. https://doi.org/10.1016/j.ajpath.2011.12.012S0002-9440(12)00014-4

  143. Brinkmann V, Davis MD, Heise CE, Albert R, Cottens S, Hof R, Bruns C, Prieschl E et al (2002) The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J Biol Chem 277(24):21453–21457. https://doi.org/10.1074/jbc.C200176200C200176200

  144. Coelho RP, Payne SG, Bittman R, Spiegel S, Sato-Bigbee C (2007) The immunomodulator FTY720 has a direct cytoprotective effect in oligodendrocyte progenitors. J Pharmacol Exp Ther 323(2):626–635. https://doi.org/10.1124/jpet.107.123927

    Article  PubMed  CAS  Google Scholar 

  145. Miron VE, Ludwin SK, Darlington PJ, Jarjour AA, Soliven B, Kennedy TE, Antel JP (2010) Fingolimod (FTY720) enhances remyelination following demyelination of organotypic cerebellar slices. Am J Pathol 176(6):2682–2694. https://doi.org/10.2353/ajpath.2010.091234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Kihara Y, Mizuno H, Chun J (2015) Lysophospholipid receptors in drug discovery. Exp Cell Res 333(2):171–177. https://doi.org/10.1016/j.yexcr.2014.11.020S0014-4827(14)00523-0

    Article  PubMed  CAS  Google Scholar 

  147. Park SJ, Im DS (2017) Sphingosine 1-phosphate receptor modulators and drug discovery. Biomol Ther (Seoul) 25(1):80–90. https://doi.org/10.4062/biomolther.2016.160biomolther.2016.160

    Article  Google Scholar 

  148. Adachi K, Chiba K (2007) FTY720 story. Its discovery and the following accelerated development of sphingosine 1-phosphate receptor agonists as immunomodulators based on reverse pharmacology. Perspect Medicin Chem 1:11–23

    Article  PubMed  PubMed Central  Google Scholar 

  149. Ahir BK, Ozer H, Engelhard HH, Lakka SS (2017) MicroRNAs in glioblastoma pathogenesis and therapy: a comprehensive review. Crit Rev Oncol Hematol 120:22–33. https://doi.org/10.1016/j.critrevonc.2017.10.003

    Article  PubMed  Google Scholar 

  150. Zhang K, Wang YW, Wang YY, Song Y, Zhu J, Si PC, Ma R (2017) Identification of microRNA biomarkers in the blood of breast cancer patients based on microRNA profiling. Gene 619:10–20. https://doi.org/10.1016/j.gene.2017.03.038

    Article  PubMed  CAS  Google Scholar 

  151. Zhao F, Ge YZ, Zhou LH, Xu LW, Xu Z, Ping WW, Wang M, Zhou CC et al (2017) Identification of hub miRNA biomarkers for bladder cancer by weighted gene coexpression network analysis. Onco Targets Ther 10:5551–5559. https://doi.org/10.2147/OTT.S146479ott-10-5551

  152. Visani M, Acquaviva G, Marucci G, Ragazzi M, Fraceschi E, Brandes AA, Tallini G, Pession A et al (2015) MicroRNA in brain neoplasia: a review. Int J Brain Disord Treat 1(1):1–16

Download references

Acknowledgments

This work was supported by the National Institute for Translational Neuroscience (INNT) of the Ministry of Science and Technology; Brazilian Federal Agency for the Support and Evaluation of Graduate Education (CAPES) of the Ministry of Education; National Council for Scientific and Technological Development (CNPq); Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro Carlos Chagas Filho Research Support Foundation (FAPERJ); Ary Frauzino Foundation for Cancer Research and Pró-Saúde Associação Beneficiente de Assistência Social e Hospitalar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tania Cristina Leite de Sampaio e Spohr.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, L.F., Moura-Neto, V. & e Spohr, T.C.L. Biomarkers in Spinal Cord Injury: from Prognosis to Treatment. Mol Neurobiol 55, 6436–6448 (2018). https://doi.org/10.1007/s12035-017-0858-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0858-y

Keywords

Navigation