Skip to main content

Advertisement

Log in

A Perspective on the Müller Cell-Neuron Metabolic Partnership in the Inner Retina

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The Müller cells represent the predominant macroglial cell in the retina. In recent decades, Müller cells have been acknowledged to be far more influential on neuronal homeostasis in the retina than previously assumed. With its unique localization, spanning the entire retina being interposed between the vessels and neurons, Müller cells are responsible for the functional and metabolic support of the surrounding neurons. As a consequence of major energy demands in the retina, high levels of glucose are consumed and processed by Müller cells. The present review provides a perspective on the symbiotic relationship between Müller cells and inner retinal neurons on a cellular level by emphasizing the essential role of energy metabolism within Müller cells in relation to retinal neuron survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bringmann A, Pannicke T, Grosche J et al (2006) Müller cells in the healthy and diseased retina. Prog Retin Eye Res 25:397–424. https://doi.org/10.1016/j.preteyeres.2006.05.003

    Article  CAS  PubMed  Google Scholar 

  2. Reichenbach A, Stolzenburg JU, Eberhardt W et al (1993) What do retinal müller (glial) cells do for their neuronal ‘small siblings’? J Chem Neuroanat 6:201–213

    Article  CAS  PubMed  Google Scholar 

  3. Reichenbach A, Bringmann A (2009) Müller cells in the healthy retina. In: Müller Cells in the Healthy and Diseased …. Springer New York, New York, pp 35–214

  4. Chong RS, Martin KR (2015) Glial cell interactions and glaucoma. Curr Opin Ophthalmol 26:73–77. https://doi.org/10.1097/ICU.0000000000000125

    Article  PubMed  PubMed Central  Google Scholar 

  5. Reichenbach A, Bringmann A (2013) New functions of Müller cells. Glia 61:651–678. https://doi.org/10.1002/glia.22477

    Article  PubMed  Google Scholar 

  6. Vecino E, Rodriguez FD, Ruzafa N et al (2016) Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res 51:1–40

    Article  CAS  PubMed  Google Scholar 

  7. Pease ME, Zack DJ, Berlinicke C et al (2009) Effect of CNTF on retinal ganglion cell survival in experimental glaucoma. Invest Ophthalmol Vis Sci 50:2194–2200. https://doi.org/10.1167/iovs.08-3013

    Article  PubMed  Google Scholar 

  8. Bringmann A, Iandiev I, Pannicke T et al (2009) Cellular signaling and factors involved in Müller cell gliosis: neuroprotective and detrimental effects. Prog Retin Eye Res 28:423–451. https://doi.org/10.1016/j.preteyeres.2009.07.001

    Article  CAS  PubMed  Google Scholar 

  9. Bringmann A, Pannicke T, Biedermann B et al (2009) Role of retinal glial cells in neurotransmitter uptake and metabolism. Neurochem Int 54:143–160. https://doi.org/10.1016/j.neuint.2008.10.014

    Article  CAS  PubMed  Google Scholar 

  10. Lu Y-B, Franze K, Seifert G et al (2006) Viscoelastic properties of individual glial cells and neurons in the CNS. Proc Natl Acad Sci U S A 103:17759–17764. https://doi.org/10.1073/pnas.0606150103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tout S, Chan-Ling T, Holländer H, Stone J (1993) The role of Müller cells in the formation of the blood-retinal barrier. Neuroscience 55:291–301

    Article  CAS  PubMed  Google Scholar 

  12. Franze K, Grosche J, Skatchkov SN et al (2007) Muller cells are living optical fibers in the vertebrate retina. Proc Natl Acad Sci U S A 104:8287–8292. https://doi.org/10.1073/pnas.0611180104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Danesh-Meyer HV, Levin LA (2015) Glaucoma as a neurodegenerative disease. J Neuroophthalmol 35:S22–S28. https://doi.org/10.1097/WNO.0000000000000293

    Article  PubMed  Google Scholar 

  14. Almasieh M, Wilson AM, Morquette B et al (2012) The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res 31:152–181. https://doi.org/10.1016/j.preteyeres.2011.11.002

    Article  CAS  PubMed  Google Scholar 

  15. Cheung N, Mitchell P, Wong TY (2010) Diabetic retinopathy. Lancet 376:124–136. https://doi.org/10.1016/S0140-6736(09)62124-3

    Article  PubMed  Google Scholar 

  16. Simó R, Hernández C (2014) Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends Endocrinol Metab 25:23–33. https://doi.org/10.1016/j.tem.2013.09.005

    Article  PubMed  Google Scholar 

  17. Hernández C, Dal Monte M, Simó R, Casini G (2016) Neuroprotection as a therapeutic target for diabetic retinopathy. J Diabetes Res 1–18. doi: https://doi.org/10.1155/2016/9508541

  18. Poitry-Yamate CL, Poitry S, Tsacopoulos M (1995) Lactate released by Müller glial cells is metabolized by photoreceptors from mammalian retina. J Neurosci 15:5179–5191

    Article  CAS  PubMed  Google Scholar 

  19. Winkler BS, Arnold MJ, Brassell MA, Puro DG (2000) Energy metabolism in human retinal Müller cells. Invest Ophthalmol Vis Sci 41:3183–3190

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Toft-Kehler AK, Gurubaran IS, Desler C et al (2016) Oxidative stress-induced dysfunction of Müller cells during starvation. Invest Ophthalmol Vis Sci 57:2721–2728. https://doi.org/10.1167/iovs.16-19275

    Article  CAS  PubMed  Google Scholar 

  21. Toft-Kehler AK, Skytt DM, Poulsen KA et al (2014) Limited energy supply in müller cells alters glutamate uptake. Neurochem Res 39:941–949. https://doi.org/10.1007/s11064-014-1289-z

    Article  CAS  PubMed  Google Scholar 

  22. Kitano S, Morgan J, Caprioli J (1996) Hypoxic and excitotoxic damage to cultured rat retinal ganglion cells. Exp Eye Res 63:105–112. https://doi.org/10.1006/exer.1996.0096

    Article  CAS  PubMed  Google Scholar 

  23. Sussman I, Erecińska M, Wilson DF (1980) Regulation of cellular energy metabolism: the Crabtree effect. Biochim Biophys Acta 591:209–223

    Article  CAS  PubMed  Google Scholar 

  24. Flammer J, Orgül S, Costa VP et al (2002) The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 21:359–393. https://doi.org/10.1016/S1350-9462(02)00008-3

    Article  PubMed  Google Scholar 

  25. Mozaffarieh M, Grieshaber MC, Flammer J (2008) Oxygen and blood flow: players in the pathogenesis of glaucoma. Mol Vis 14:224–233

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kohner EM, Patel V, Rassam SMB (1995) Role of Blood Flow and Impaired Autoregulation in the Pathogenesis of Diabetic Retinopathy. Diabetes 44:603–607. https://doi.org/10.2337/diab.44.6.603

  27. Reichenbach A, Bringmann A (2015) Retinal Glia. Biota Publishing

  28. Archer SN, Ahuja P, Caffé R et al (2004) Absence of phosphoglucose isomerase-1 in retinal photoreceptor, pigment epithelium and Muller cells. Eur J Neurosci 19:2923–2930. https://doi.org/10.1111/j.0953-816X.2004.03417.x

    Article  PubMed  Google Scholar 

  29. Toft-Kehler AK, Skytt DM, Svare A et al (2017) Mitochondrial function in Müller cells—does it matter? Mitochondrion. https://doi.org/10.1016/j.mito.2017.02.002

  30. Lindsay KJ, Du J, Sloat SR et al (2014) Pyruvate kinase and aspartate-glutamate carrier distributions reveal key metabolic links between neurons and glia in retina. Proc Natl Acad Sci U S A 111:15579–15584. https://doi.org/10.1073/pnas.1412441111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rueda EM, Johnson JE, Giddabasappa A et al (2016) The cellular and compartmental profile of mouse retinal glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and ~P transferring kinases. Mol Vis 22:847–885

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Poitry-Yamate C, Gianoncelli A, Kaulich B, Kourousias G, Magill AW, Lepore M, Gajdosik V & Gruetter R (2013) Feasibility of direct mapping of cerebral fluorodeoxy-D-glucose metabolism in situ at subcellular resolution using soft X-ray fluorescence. J Neurosci Res 91:1050–1058. https://doi.org/10.1002/jnr.23171

  33. Kuwabara CD (1961) Retinal glycogen. Arch Ophthalmol 66:680–688

    Article  CAS  PubMed  Google Scholar 

  34. Poitry-Yamate C, Tsacopoulos M (1991) Glial (Müller) cells take up and phosphorylate [3H]2-deoxy-d-glucose in a mammalian retina. Neurosci Lett 122:241–244. https://doi.org/10.1016/0304-3940(91)90868-T

    Article  CAS  PubMed  Google Scholar 

  35. Pérezleón JA, Osorio-Paz I, Francois L, Salceda R (2013) Immunohistochemical localization of glycogen synthase and GSK3β: control of glycogen content in retina. Neurochem Res 38:1063–1069. https://doi.org/10.1007/s11064-013-1017-0

    Article  PubMed  Google Scholar 

  36. Pfeiffer B, Grosche J, Reichenbach A, Hamprecht B (1994) Immunocytochemical demonstration of glycogen phosphorylase in Müller (glial) cells of the mammalian retina. Glia 12:62–67. https://doi.org/10.1002/glia.440120108

    Article  CAS  PubMed  Google Scholar 

  37. Pfeiffer-Guglielmi B, Francke M, Reichenbach A et al (2005) Glycogen phosphorylase isozyme pattern in mammalian retinal Müller (glial) cells and in astrocytes of retina and optic nerve. Glia 49:84–95. https://doi.org/10.1002/glia.20102

    Article  PubMed  Google Scholar 

  38. Ripps H, Witkovsky P (1985) Chapter 7 neuron—glia interaction in the brain and retina. Prog Retin Res 4:181–219. https://doi.org/10.1016/0278-4327(85)90009-4

    Article  Google Scholar 

  39. Poitry-Yamate CL, Tsacopoulos M (1992) Glucose metabolism in freshly isolated Müller glial cells from a mammalian retina. J Comp Neurol 320:257–266. https://doi.org/10.1002/cne.903200209

    Article  CAS  PubMed  Google Scholar 

  40. Swanson RA, Yu AC, Chan PH, Sharp FR (1990) Glutamate increases glycogen content and reduces glucose utilization in primary astrocyte culture. J Neurochem 54:490–496

    Article  CAS  PubMed  Google Scholar 

  41. Rahman B, Kussmaul L, Hamprecht B, Dringen R (2000) Glycogen is mobilized during the disposal of peroxides by cultured astroglial cells from rat brain. Neurosci Lett 290:169–172

    Article  CAS  PubMed  Google Scholar 

  42. Cohen L, Noell W (1960) Glucose catabolism of rabbit retina before and after development of visual function. J Neurochem 5:253–276

    Article  CAS  PubMed  Google Scholar 

  43. Ames A, Li YY, Heher EC, Kimble CR (1992) Energy metabolism of rabbit retina as related to function: high cost of Na+ transport. J Neurosci 12:840–853

    Article  CAS  PubMed  Google Scholar 

  44. Winkler BS (1981) Glycolytic and oxidative metabolism in relation to retinal function. J Gen Physiol 77:667–692. https://doi.org/10.1085/jgp.77.6.667

    Article  CAS  PubMed  Google Scholar 

  45. Tsacopoulos M, Magistretti PJ (1996) Metabolic coupling between glia and neurons. J Neurosci 16:877–885

    Article  CAS  PubMed  Google Scholar 

  46. Tsacopoulos M, Poitry-Yamate CL, MacLeish PR, Poitry S (1998) Trafficking of molecules and metabolic signals in the retina. Prog Retin Eye Res 17:429–442

    Article  CAS  PubMed  Google Scholar 

  47. Hurley JB, Lindsay KJ, Du J (2015) Glucose, lactate, and shuttling of metabolites in vertebrate retinas. J Neurosci Res 93:1079–1092. https://doi.org/10.1002/jnr.23583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Winkler BS, Starnes CA, Sauer MW et al (2004) Cultured retinal neuronal cells and Müller cells both show net production of lactate. Neurochem Int 45:311–320. https://doi.org/10.1016/j.neuint.2003.08.017

    Article  CAS  PubMed  Google Scholar 

  49. Hurley JB, Chertov AO, Lindsay K, et al (2014) Energy metabolism in the vertebrate retina. In: Vertebrate. Springer Japan, Tokyo, pp 91–137

  50. Lauritzen KH, Morland C, Puchades M et al (2014) Lactate receptor sites link neurotransmission, neurovascular coupling, and brain energy metabolism. Cereb Cortex 24:2784–2795. https://doi.org/10.1093/cercor/bht136

    Article  PubMed  Google Scholar 

  51. Rice AC, Zsoldos R, Chen T et al (2002) Lactate administration attenuates cognitive deficits following traumatic brain injury. Brain Res 928:156–159

    Article  CAS  PubMed  Google Scholar 

  52. Cureton EL, Kwan RO, Dozier KC et al (2010) A different view of lactate in trauma patients: protecting the injured brain. J Surg Res 159:468–473. https://doi.org/10.1016/j.jss.2009.04.020

    Article  CAS  PubMed  Google Scholar 

  53. Bouzat P, Sala N, Suys T et al (2014) Cerebral metabolic effects of exogenous lactate supplementation on the injured human brain. Intensive Care Med 40:412–421. https://doi.org/10.1007/s00134-013-3203-6

    Article  CAS  PubMed  Google Scholar 

  54. Kolko M, Vosborg F, Henriksen UL et al (2015) Lactate transport and receptor actions in retina: potential roles in retinal function and disease. Neurochem Res. https://doi.org/10.1007/s11064-015-1792-x

  55. Bergersen L, Jóhannsson E, Veruki ML et al (1999) Cellular and subcellular expression of monocarboxylate transporters in the pigment epithelium and retina of the rat. Neuroscience 90:319–331

    Article  CAS  PubMed  Google Scholar 

  56. Chidlow G, Wood JPM, Graham M, Osborne NN (2005) Expression of monocarboxylate transporters in rat ocular tissues. Am J Physiol, Cell Physiol 288:C416–C428. https://doi.org/10.1152/ajpcell.00037.2004

    Article  CAS  PubMed  Google Scholar 

  57. Wood JPM, Chidlow G, Graham M, Osborne NN (2005) Energy substrate requirements for survival of rat retinal cells in culture: the importance of glucose and monocarboxylates. J Neurochem 93:686–697. https://doi.org/10.1111/j.1471-4159.2005.03059.x

    Article  CAS  PubMed  Google Scholar 

  58. Martin PM, Dun Y, Mysona B et al (2007) Expression of the sodium-coupled monocarboxylate transporters SMCT1 (SLC5A8) and SMCT2 (SLC5A12) in retina. Invest Ophthalmol Vis Sci 48:3356. https://doi.org/10.1167/iovs.06-0888

    Article  PubMed  Google Scholar 

  59. Yu DY, Cringle SJ (2001) Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog Retin Eye Res 20:175–208

    Article  CAS  PubMed  Google Scholar 

  60. Bristow EA, Griffiths PG, Andrews RM et al (2002) The distribution of mitochondrial activity in relation to optic nerve structure. Arch Ophthalmol 120:791–796

    Article  PubMed  Google Scholar 

  61. Wong-Riley MTT (2010) Energy metabolism of the visual system. Eye Brain 2:99–116. https://doi.org/10.2147/EB.S9078

    Article  PubMed  PubMed Central  Google Scholar 

  62. Xu Y, Ola MS, Berkich DA et al (2007) Energy sources for glutamate neurotransmission in the retina: absence of the aspartate/glutamate carrier produces reliance on glycolysis in glia. J Neurochem 101:120–131. https://doi.org/10.1111/j.1471-4159.2006.04349.x

    Article  CAS  PubMed  Google Scholar 

  63. Poitry S, Poitry-Yamate C, Ueberfeld J et al (2000) Mechanisms of glutamate metabolic signaling in retinal glial (Müller) cells. J Neurosci 20:1809–1821

    Article  CAS  PubMed  Google Scholar 

  64. Germer A, Schuck J, Wolburg H et al (1998) Distribution of mitochondria within Muller cells – II. Post-natal development of the rabbit retinal periphery in vivo and in vitro: dependence on oxygen supply. Springer J Neurocytol 27:347–359. https://doi.org/10.1023/A:1006938825474

    Article  CAS  Google Scholar 

  65. Carelli V, Ross-Cisneros FN, Sadun AA (2004) Mitochondrial dysfunction as a cause of optic neuropathies. Prog Retin Eye Res 23:53–89. https://doi.org/10.1016/j.preteyeres.2003.10.003

    Article  CAS  PubMed  Google Scholar 

  66. Kanai Y, Hediger MA (2004) The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects. Pflugers Arch 447:469–479. https://doi.org/10.1007/s00424-003-1146-4

    Article  CAS  PubMed  Google Scholar 

  67. Rauen T, Rothstein JD, Wässle H (1996) Differential expression of three glutamate transporter subtypes in the rat retina. Cell Tissue Res 286:325–336

    Article  CAS  PubMed  Google Scholar 

  68. Rauen T, Taylor WR, Kuhlbrodt K, Wiessner M (1998) High-affinity glutamate transporters in the rat retina: a major role of the glial glutamate transporter GLAST-1 in transmitter clearance. Cell Tissue Res 291:19–31

    Article  CAS  PubMed  Google Scholar 

  69. Imasawa M, Kashiwagi K, Iizuka Y et al (2005) Different expression role among glutamate transporters in rat retinal glial cells under various culture conditions. Brain Res Mol Brain Res 142:1–8. https://doi.org/10.1016/j.molbrainres.2005.08.010

    Article  CAS  PubMed  Google Scholar 

  70. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  CAS  PubMed  Google Scholar 

  71. Derouiche A, Rauen T (1995) Coincidence of L-glutamate/L-aspartate transporter (GLAST) and glutamine synthetase (GS) immunoreactions in retinal glia: evidence for coupling of GLAST and GS in transmitter clearance. J Neurosci Res 42:131–143. https://doi.org/10.1002/jnr.490420115

    Article  CAS  PubMed  Google Scholar 

  72. Riepe RE, Norenburg MD (1977) Müller cell localisation of glutamine synthetase in rat retina. Nature 268:654–655. https://doi.org/10.1038/268654a0

    Article  CAS  PubMed  Google Scholar 

  73. Umapathy NS, Li W, Mysona BA et al (2005) Expression and function of glutamine transporters SN1 (SNAT3) and SN2 (SNAT5) in retinal Müller cells. Invest Ophthalmol Vis Sci 46:3980. https://doi.org/10.1167/iovs.05-0488

    Article  PubMed  Google Scholar 

  74. McKenna MC (2007) The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain. J Neurosci Res 85:3347–3358. https://doi.org/10.1002/jnr.21444

    Article  CAS  PubMed  Google Scholar 

  75. Ola MS, Hosoya K-I, LaNoue KF (2011) Regulation of glutamate metabolism by hydrocortisone and branched chain keto acids in cultured rat retinal Müller cells (TR-MUL). Neurochem Int 59:656–663. https://doi.org/10.1016/j.neuint.2011.06.010

    Article  CAS  PubMed  Google Scholar 

  76. Jonsson KB, Frydkjaer-Olsen U, Grauslund J (2016) Vascular changes and neurodegeneration in the early stages of diabetic retinopathy: which comes first? Ophthalmic Res 56:1–9. https://doi.org/10.1159/000444498

    Article  PubMed  Google Scholar 

  77. Riva CE, Alm A, Pournaras CJ (2011) Ocular circulation in Adler's Physiology of the eye. : Nutrition of the eye. 243–273

  78. Pournaras CJ, Rungger-Brändle E, Riva CE et al (2008) Regulation of retinal blood flow in health and disease. Prog Retin Eye Res 27:284–330. https://doi.org/10.1016/j.preteyeres.2008.02.002

    Article  CAS  PubMed  Google Scholar 

  79. Riva CE, Sinclair SH, Grunwald JE (1981) Autoregulation of retinal circulation in response to decrease of perfusion pressure. Invest Ophthalmol Vis Sci 21:34–38

    CAS  PubMed  Google Scholar 

  80. Riva CE, Titze P, Hero M, Petrig BL (1997) Effect of acute decreases of perfusion pressure on choroidal blood flow in humans. Invest Ophthalmol Vis Sci 38:1752–1760

    CAS  PubMed  Google Scholar 

  81. Alm A (1977) The effect of sympathetic stimulation on blood flow through the uvea, retina and optic nerve in monkeys (Macaca irus). Exp Eye Res

  82. Nilsson SF (1996) Nitric oxide as a mediator of parasympathetic vasodilation in ocular and extraocular tissues in the rabbit. Invest Ophthalmol Vis Sci 37:2110–2119

    CAS  PubMed  Google Scholar 

  83. Laties AM (1967) Central retinal artery innervation. Absence of adrenergic innervation to the intraocular branches. Arch Ophthalmol 77:405–409

    Article  CAS  PubMed  Google Scholar 

  84. Riva CE, Logean E, Falsini B (2005) Visually evoked hemodynamical response and assessment of neurovascular coupling in the optic nerve and retina. Prog Retin Eye Res 24:183–215. https://doi.org/10.1016/j.preteyeres.2004.07.002

    Article  PubMed  Google Scholar 

  85. Newman EA (2013) Functional hyperemia and mechanisms of neurovascular coupling in the retinal vasculature. J Cereb Blood Flow Metab 33:1685–1695. https://doi.org/10.1038/jcbfm.2013.145

  86. Kur J, Newman EA (2014) Purinergic control of vascular tone in the retina. J Physiol Lond 592:491–504. https://doi.org/10.1113/jphysiol.2013.267294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Araque A, Carmignoto G, Haydon PG, Oliet S (2014) Gliotransmitters travel in time and space. Neuron

  88. Metea MR, Newman EA (2006) Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J Neurosci 26:2862–2870. https://doi.org/10.1523/JNEUROSCI.4048-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mishra A, Hamid A, Newman EA (2011) Oxygen modulation of neurovascular coupling in the retina. Proc Natl Acad Sci U S A 108:17827–17831. https://doi.org/10.1073/pnas.1110533108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Newman EA (2005) Calcium increases in retinal glial cells evoked by light-induced neuronal activity

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Kolko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toft-Kehler, A.K., Skytt, D.M. & Kolko, M. A Perspective on the Müller Cell-Neuron Metabolic Partnership in the Inner Retina. Mol Neurobiol 55, 5353–5361 (2018). https://doi.org/10.1007/s12035-017-0760-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0760-7

Keywords

Navigation