Skip to main content

Advertisement

Log in

Japanese Encephalitis Virus Infection Results in Transient Dysfunction of Memory Learning and Cholinesterase Inhibition

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cholinergic system has an important role in memory and learning. Abnormal cognitive and behavioral changes have been reported in Japanese encephalitis (JE), but their basis has not been comprehensively evaluated. In this study, we report memory and learning and its association with acetylcholinesterase (AChE) activity, JE virus titer, and with histopathological observations in a rat model of JE. Wistar rats were intracerebrally inoculated on 12th day with 3 × 106 pfu/ml of JE virus. Memory and learning were assessed by the active and passive avoidance tests on 10, 33, and 48 days post inoculation (dpi). After 10, 33, and 48 dpi AChE activity, Japanese encephalitis virus (JEV) titer and histopathological changes were studied in the frontal cortex, thalamus, midbrain, cerebellum, and hippocampus. There was significant impairment in memory and learning on 10 dpi which started improving from 33 dpi to 48 dpi by active avoidance test. Passive avoidance test showed decrease in transfer latency time of retention trial compared to acquisition on first, second, and third retention day trial compared to controls. AChE inhibition was more marked in the hippocampus, frontal cortex, and cerebellum on 10 dpi. However, AChE activity started improving from 33 dpi to 48 dpi. AChE activity in the thalamus and midbrain correlated with active avoidance test on 10 dpi and 33 dpi. Histopathological studies also revealed improvement on 33 and 48 compared to 10 dpi. The present study demonstrates transient memory and learning impairment which was associated with reduction in AChE, JEV titer, and damage in different brain regions of JEV infected rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Solomon T, Ni H, Beasley DW, Ekkelenkamp M, Cardosa MJ, Barrett AD (2003) Origin and evolution of Japanese encephalitis virus in southeast Asia. J Virol 77:3091–3098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. World Health Organization (2006) Japanese encephalitis vaccines. WklyEpidemiol Rec 81:331–40

    Google Scholar 

  3. Solomon T, Dung NM, Kneen R, Gainsborough M, Vaughn DW, Khanh VT (2000) Japanese encephalitis. J Neurol Neurosurg Psychiatry 68:405–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. UNICEF (1994) The state of the world’s children. Oxford Uni. Press, Oxford, p 82

    Google Scholar 

  5. Gourie Devi M, Ravi V, Shankar SK (1995) Japanese encephalitis: an overview. In: Rose CF (ed) Recent advances in tropical neurology. Elsevier, Amsterdam, pp 221–235

    Google Scholar 

  6. Kumar R, Mathur A, Singh KB, Sitholey P, Prasad M, Shukla R, Agarwal SP, Arockiasamy J (1993) Clinical sequelae of Japanese encephalitis in children. Indian J Med Res 97:9–13

    CAS  PubMed  Google Scholar 

  7. Misra UK, Kalita J (1997) Anterior horn cells are also involved in Japanese encephalitis. Acta Neurol Scand 96:114–117

    Article  CAS  PubMed  Google Scholar 

  8. Jmor F, Emsley HC, Fischer M, Solomon T, Lewthwaite P (2008) The incidence of acute encephalitis syndrome in Western industrialised and tropical countries. Virol J 5:134

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kalita J, Misra UK, Srivastava A (2009) Cognitive impairment in encephalitis: P3 and MRI correlation. Electromyogr Clin Neurophysiol 49:27–33

    CAS  PubMed  Google Scholar 

  10. Johnson RT, Burke DS, Elwell M, Leake CJ, Nisalak A, Hoke CH, Lorsomrudee W (1985) Japanese encephalitis: immunocytochemical studies of viral antigen and inflammatory cells in fatal cases. Ann Neurol 18:567–573

    Article  CAS  PubMed  Google Scholar 

  11. Zimmerman HM (1946) The pathology of Japanese B encephalitis. Am J Pathol 22:965–991

    PubMed Central  Google Scholar 

  12. Shankar SK, Rao TV, Mruthyunjayanna BP, Devi MG, Deshpande DH (1983) Autopsy study of brains during an epidemic of Japanese encephalitis in Karnataka. Indian J Med Res 78:431–440

    CAS  PubMed  Google Scholar 

  13. Handique SK, Das RR, Barman K, Medhi N, Saharia B, Saikia P, Ahmed SA (2006) Temporal lobe involvement in Japanese encephalitis: problems in differential diagnosis. Am J Neuroradiol 27:1027–1031

    CAS  PubMed  Google Scholar 

  14. Kalita J, Misra UK (2000) Comparison of CT scan and MRI findings in the diagnosis of Japanese encephalitis. J Neurol Sci 174:3–8

    Article  CAS  PubMed  Google Scholar 

  15. Misra UK, Kalita J (2010) Overview: Japanese encephalitis. Prog Neurobiol 91:108–20

    Article  CAS  PubMed  Google Scholar 

  16. Misra UK, Kumar S, Kalita J, Ahmad A, Khanna VK, Khan MY, Palit G (2009) A study of motor activity and catecholamine levels in different brain regions following Japanese encephalitis virus infection in rats. Brain Res 1292:136–47

    Article  CAS  PubMed  Google Scholar 

  17. Blain PG (2011) Organophosphorus poisoning (acute). BMJ Clin Evid. Review

  18. Yang KD, Yeh WT, Chen RF, Chuon HL, Tsai HP, Yao CW, Shaio MF (2004) A model to study neurotropism and persistency of Japanese encephalitis virus infection in human neuroblastoma cells and leukocytes. J Gen Virol 85:635–42

    Article  CAS  PubMed  Google Scholar 

  19. Ogata A, Nagashima K, Hall WW, Ichikawa M, Kimura-Kuroda J, Yasui K (1991) Japanese encephalitis virus neurotropism is dependent on the degree of neuronal maturity. J Virol 65:880–886

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Moreira EG, Vassilieff I, Vassilieff VS (2001) Developmental lead exposure: behavioral alterations in the short and long term. Neurotoxicol Teratol 23:489–95

    Article  CAS  PubMed  Google Scholar 

  21. Tota S, Kamat PK, Awasthi H, Singh N, Raghubir R, Nath C, Hanif K (2009) Candesartan improves memory decline in mice: involvement of AT1 receptors in memory deficit induced by intracerebral streptozotocin. Behav Brain Res 199:235–40

    Article  CAS  PubMed  Google Scholar 

  22. Glowinski J, Iversen LL (1966) Regional studies of catecholamines in the rat brain. I. The disposition of [3H]norepinephrine, [3H]dopamine and [3H]dopa in various regions of the brain. J Neurochem 13:655–669

    Article  CAS  PubMed  Google Scholar 

  23. Ellman GL, Courtney KD, Andres V Jr, Feather-stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  24. Lowry OH, Roserough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–75

    CAS  PubMed  Google Scholar 

  25. Sei Y, Arora PK, Skolnick P, Paul IA (1992) Spatial learning impairment in a murine model of AIDS. FASEB J 6:3008–13

    CAS  PubMed  Google Scholar 

  26. Mohammed AH, Norrby E, Kristensson K (1993) Viruses and behavioural changes: a review of clinical and experimental findings. Rev Neurosci 4:267–86, Review

    Article  CAS  PubMed  Google Scholar 

  27. Dittrich W, Bode L, Ludwig H, Kao M, Schneider K (1989) Learning deficiencies in Borna disease virus-infected but clinically healthy rats. Biol Psychiatry 26:818–28

    Article  CAS  PubMed  Google Scholar 

  28. Volmer R, Prat CM, Le Masson G, Garenne A, Gonzalez-Dunia D (2007) Borna disease virus infection impairs synaptic plasticity. J Virol 81:8833–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Butcher LL, Woolf NJ (2004) Cholinergic neurons and networks revisited. In: Paxinos GW (ed) The rat central nerobus system. Elsevier Academic, San Francisco, p 1257–1268

  30. Kumar S, Kalita J, Saxena V, Khan MY, Khanna VK, Sharma S, Dhole TN, Misra UK (2009) Some observations on the tropism of Japanese encephalitis virus in rat brain. Brain Res 1268:135–41

    Article  CAS  PubMed  Google Scholar 

  31. German AC, Myint KS, Mai NT, Pomeroy I, Phu NH, Tzartos J, Winter P, Collett J et al (2006) A preliminary neuropathological study of Japanese encephalitis in humans and a mouse model.Trans. R Soc Trop Med Hyg 100(12):1135–45

    Article  Google Scholar 

  32. Ooi MH, Lewthwaite P, Lai BF, Mohan A, Clear D, Lim L, Krishnan S, Preston T et al (2008) The epidemiology, clinical features, and long-term prognosis of Japanese encephalitis in central sarawak, malaysia, 1997–2005. Clin Infect Dis 47:458–68

    Article  PubMed  Google Scholar 

  33. Zink WE, Anderson E, Boyle J, Hock L, Rodriguez-Sierra J et al (2002) Impaired spatial cognition and synaptic potentiation in a murine model of human immunodeficiency virus type 1encephalitis. J Neurosci 22:2096–105

    CAS  PubMed  Google Scholar 

  34. Srivastava R, Kalita J, Khan MY, Gore MM, Bondre VP, Misra UK (2013) Temporal changes of Japanese encephalitits virus in different brain regions of rat. Indian J Med Res 138:219–23

    PubMed  PubMed Central  Google Scholar 

  35. Desai A, Shankar SK, Ravi V, Chandramuki A, Gourie-Devi M (1995) Japanese encephalitis virus antigen in the human brain and its topographic distribution. Acta Neuropathol 89:368–373

    Article  CAS  PubMed  Google Scholar 

  36. Mathur A, Arora KL, Chaturvedi UC (1983) Host defence mechanisms against Japanese encephalitis virus infection in mice. J Gen Virol 64:805–11

    Article  PubMed  Google Scholar 

  37. Srivastava S, Khanna N, Saxena SK, Singh A, Mathur A, Dhole TN (1999) Degradation of Japanese encephalitis virus by neutrophils. Int J ExpPathol 80:17–24

    CAS  Google Scholar 

  38. Gies U, Görcs TJ, Mulder J, Planz O, Stitz L, Bilzer T, Luiten PG, Harkany T (2001) Cortical cholinergic decline parallels the progression of Borna virus encephalitis. Neuroreport Vol 12:3767–72

    Article  CAS  Google Scholar 

  39. Méndez M, Méndez-López M, López L, Aller MA, Arias J, Arias JL (2011) Acetylcholinesterase activity in an experimental rat model of type C hepatic encephalopathy. Acta Histochem 113:358–62

    Article  PubMed  Google Scholar 

  40. Costa LG (2006) Current issues in organophosphate toxicology. Clin Chim Acta 366:1–13

    Article  CAS  PubMed  Google Scholar 

  41. Echbichon DJ, Joy RM (1995) Pestic neurol dis, 2nd edn. CRC Press, Boston and London

    Google Scholar 

  42. Chen Y (2012) Organophosphate-induced brain damage: mechanisms, neuropsychiatric and neurological consequences, and potential therapeutic strategies. Neurotoxicol 33:391–400

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank Rakesh nigam and Shakti kumar for secretarial help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usha Kant Misra.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Ethical Approval

The experimental protocol was approved by Institutional Animal Ethics Committee (KGMU/49/IAEC/2013). All the experimental procedures were carried out in accordance with the institutional guidelines laid down by the committee for the purpose of control and supervision of experiments on animal (CPCSEA).

Funding Support

Yes, this study was (No. CST/SERPD/D-996) financially supported by a grant from Uttar Pradesh Council of Science & Technology Lucknow, UP, India.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, P.S., Khanna, V.K., Kalita, J. et al. Japanese Encephalitis Virus Infection Results in Transient Dysfunction of Memory Learning and Cholinesterase Inhibition. Mol Neurobiol 54, 4705–4715 (2017). https://doi.org/10.1007/s12035-016-9963-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9963-6

Keywords

Navigation