Skip to main content

Advertisement

Log in

Serum Antibodies to Glycans in Peripheral Neuropathies

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In peripheral neuropathies, such as sensorimotor neuropathies, motor neuron diseases, or the Guillain-Barré syndrome, serum antibodies recognizing saccharide units, portion of oligosaccharides, or oligosaccharide chains, have been found. These antibodies are called anti-glycosphingolipid (GSL) or anti-ganglioside antibodies. However, the information on the aglycone carrying the hydrophilic oligosaccharide remains elusive. The absolute and unique association of GSL to the onset, development and symptomatology of the peripheral neuropathies could be misleading. Here, we report some thoughts on the matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wiegandt H (1985) Chapter 3 gangliosides. In: Neuberger A, van Deenen LLM (eds) New comprehensive biochemistry. Elsevier, UK, pp 199–260

    Google Scholar 

  2. Labat-Robert J, Robert L (2012) Fifty years of structural glycoproteins. Pathol Biol (Paris) 60:66–75

    Article  CAS  Google Scholar 

  3. Kjellen L, Lindahl U (1991) Proteoglycans: structures and interactions. Annu Rev Biochem 60:443–475

    Article  CAS  PubMed  Google Scholar 

  4. Sonnino S, Mauri L, Ciampa MG, Prinetti A (2013) Gangliosides as regulators of cell signaling: ganglioside-protein interactions or ganglioside-driven membrane organization? J Neurochem 124:432–435

    Article  CAS  PubMed  Google Scholar 

  5. Sonnino S, Mauri L, Chigorno V, Prinetti A (2007) Gangliosides as components of lipid membrane domains. Glycobiology 17:1R–13R

    Article  CAS  PubMed  Google Scholar 

  6. Maccioni HJ, Quiroga R, Spessott W (2011) Organization of the synthesis of glycolipid oligosaccharides in the Golgi complex. FEBS Lett 585:1691–1698

    Article  CAS  PubMed  Google Scholar 

  7. Aebi M (2013) N-linked protein glycosylation in the ER. Biochim Biophys Acta 1833:2430–2437

    Article  CAS  PubMed  Google Scholar 

  8. Sonnino S, Cantu L, Corti M, Acquotti D, Venerando B (1994) Aggregative properties of gangliosides in solution. Chem Phys Lipids 71:21–45

    Article  CAS  PubMed  Google Scholar 

  9. Estevez F, Carr A, Solorzano L, Valiente O, Mesa C, Barroso O, Sierra GV, Fernandez LE (1999) Enhancement of the immune response to poorly immunogenic gangliosides after incorporation into very small size proteoliposomes (VSSP). Vaccine 18:190–197

    Article  CAS  PubMed  Google Scholar 

  10. Yu RK, Ariga T, Usuki S, Kaida K (2011) Pathological roles of ganglioside mimicry in Guillain-Barre syndrome and related neuropathies. Adv Exp Med Biol 705:349–365

    Article  CAS  PubMed  Google Scholar 

  11. Komagamine T, Yuki N (2006) Ganglioside mimicry as a cause of Guillain-Barre syndrome. CNS Neurol Disord Drug Targets 5:391–400

    Article  CAS  PubMed  Google Scholar 

  12. Willison HJ, Goodyear CS (2013) Glycolipid antigens and autoantibodies in autoimmune neuropathies. Trends Immunol 34:453–459

    Article  CAS  PubMed  Google Scholar 

  13. Guimaraes-Costa R, Bombelli F, Leger JM (2013) Multifocal motor neuropathy. Curr Opin Neurol 26:503–509

    Article  CAS  PubMed  Google Scholar 

  14. O'Hanlon GM, Bullens RW, Plomp JJ, Willison HJ (2002) Complex gangliosides as autoantibody targets at the neuromuscular junction in Miller Fisher syndrome: a current perspective. Neurochem Res 27:697–709

    Article  PubMed  Google Scholar 

  15. Dalakas MC (2015) Pathogenesis of immune-mediated neuropathies. Biochim Biophys Acta 1852:658–666

    Article  CAS  PubMed  Google Scholar 

  16. Lunn MP, Nobile-Orazio E (2012) Immunotherapy for IgM anti-myelin-associated glycoprotein paraprotein-associated peripheral neuropathies. Cochrane Database Syst Rev 5:CD002827

    Google Scholar 

  17. Vernino S, Wolfe GI (2007) Antibody testing in peripheral neuropathies. Neurol Clin 25:29–46

    Article  PubMed  Google Scholar 

  18. Nobile-Orazio E, Legname G, Daverio R, Carpo M, Giuliani A, Sonnino S, Scarlato G (1990) Motor neuron disease in a patient with a monoclonal IgMk directed against GM1, GD1b, and high-molecular-weight neural-specific glycoproteins. Ann Neurol 28:190–194

    Article  CAS  PubMed  Google Scholar 

  19. Thomas FP, Lee AM, Romas SN, Latov N (1989) Monoclonal IgMs with anti-Gal(beta 1–3) GalNAc activity in lower motor neuron disease; identification of glycoprotein antigens in neural tissue and cross-reactivity with serum immunoglobulins. J Neuroimmunol 23:167–174

    Article  CAS  PubMed  Google Scholar 

  20. Johannis W, Renno JH, Klatt AR, Wielckens K (2014) Anti-glycolipid antibodies in patients with neuropathy: a diagnostic assessment. J Clin Neurosci 21:488–492

    Article  CAS  PubMed  Google Scholar 

  21. Caudie C, Quittard Pinon A, Bouhour F, Vial C, Garnier L, Fabien N (2013) Comparison of commercial tests for detecting multiple anti-ganglioside autoantibodies in patients with well-characterized immune-mediated peripheral neuropathies. Clin Lab 59:1277–1287

    Article  CAS  PubMed  Google Scholar 

  22. Susuki K, Yuki N, Schafer DP, Hirata K, Zhang G, Funakoshi K, Rasband MN (2012) Dysfunction of nodes of Ranvier: a mechanism for anti-ganglioside antibody-mediated neuropathies. Exp Neurol 233:534–542

    Article  CAS  PubMed  Google Scholar 

  23. He L, Zhang G, Liu W, Gao T, Sheikh KA (2015) Anti-ganglioside antibodies induce nodal and axonal injury via Fcgamma receptor-mediated inflammation. J Neurosci 35:6770–6785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yuki N, Watanabe H, Nakajima T, Spath PJ (2011) IVIG blocks complement deposition mediated by anti-GM1 antibodies in multifocal motor neuropathy. J Neurol Neurosurg Psychiatry 82:87–91

    Article  CAS  PubMed  Google Scholar 

  25. Prinetti A, Chigorno V, Tettamanti G, Sonnino S (2000) Sphingolipid-enriched membrane domains from rat cerebellar granule cells differentiated in culture. A compositional study. J Biol Chem 275:11658–11665

    Article  CAS  PubMed  Google Scholar 

  26. Kannagi R, Stroup R, Cochran NA, Urdal DL, Young WW Jr, Hakomori S (1983) Factors affecting expression of glycolipid tumor antigens: influence of ceramide composition and coexisting glycolipid on the antigenicity of gangliotriaosylceramide in murine lymphoma cells. Cancer Res 43:4997–5005

    CAS  PubMed  Google Scholar 

  27. Lloyd KO, Gordon CM, Thampoe IJ, DiBenedetto C (1992) Cell surface accessibility of individual gangliosides in malignant melanoma cells to antibodies is influenced by the total ganglioside composition of the cells. Cancer Res 52:4948–4953

    CAS  PubMed  Google Scholar 

  28. Tatewaki K, Yamaki T, Maeda Y, Tobioka H, Piao H, Yu H, Ibayashi Y, Sawada N et al (1997) Cell density regulates crypticity of GM3 ganglioside on human glioma cells. Exp Cell Res 233:145–154

    Article  CAS  PubMed  Google Scholar 

  29. Naiki M, Marcus DM, Ledeen R (1974) Properties of antisera to ganglioside GM1 and asialo GM1. J Immunol 113:84–93

    CAS  PubMed  Google Scholar 

  30. Tettamanti G, Riboni L (1994) Gangliosides turnover and neural cells function: a new perspective. Prog Brain Res 101:77–100

    Article  CAS  PubMed  Google Scholar 

  31. Prinetti A, Chigorno V, Prioni S, Loberto N, Marano N, Tettamanti G, Sonnino S (2001) Changes in the lipid turnover, composition, and organization, as sphingolipid-enriched membrane domains, in rat cerebellar granule cells developing in vitro. J Biol Chem 276:21136–21145

    Article  CAS  PubMed  Google Scholar 

  32. Goodfellow JA, Bowes T, Sheikh K, Odaka M, Halstead SK, Humphreys PD, Wagner ER, Yuki N et al (2005) Overexpression of GD1a ganglioside sensitizes motor nerve terminals to anti-GD1a antibody-mediated injury in a model of acute motor axonal neuropathy. J Neurosci 25:1620–1628

    Article  CAS  PubMed  Google Scholar 

  33. McGonigal R, Rowan EG, Greenshields KN, Halstead SK, Humphreys PD, Rother RP, Furukawa K, Willison HJ (2010) Anti-GD1a antibodies activate complement and calpain to injure distal motor nodes of Ranvier in mice. Brain 133:1944–1960

    Article  PubMed  Google Scholar 

  34. Lehmann HC, Lopez PH, Zhang G, Ngyuen T, Zhang J, Kieseier BC, Mori S, Sheikh KA (2007) Passive immunization with anti-ganglioside antibodies directly inhibits axon regeneration in an animal model. J Neurosci 27:27–34

    Article  CAS  PubMed  Google Scholar 

  35. Van Heyningen WE, Carpenter CC, Pierce NF, Greenough WB 3rd (1971) Deactivation of cholera toxin by ganglioside. J Infect Dis 124:415–418

    Article  PubMed  Google Scholar 

  36. Masserini M, Freire E, Palestini P, Calappi E, Tettamanti G (1992) Fuc-GM1 ganglioside mimics the receptor function of GM1 for cholera toxin. Biochemistry 31:2422–2426

    Article  CAS  PubMed  Google Scholar 

  37. Wands AM, Fujita A, McCombs JE, Cervin J, Dedic B, Rodriguez AC, Nischan N, Bond MR et al (2015) Fucosylation and protein glycosylation create functional receptors for cholera toxin. Elife 4:e09545

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Sonnino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonnino, S., Chiricozzi, E., Ciampa, M.G. et al. Serum Antibodies to Glycans in Peripheral Neuropathies. Mol Neurobiol 54, 1564–1567 (2017). https://doi.org/10.1007/s12035-016-9775-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9775-8

Keywords

Navigation