Skip to main content

Advertisement

Log in

Exogenous Neural Stem Cells Transplantation as a Potential Therapy for Photothrombotic Ischemia Stroke in Kunming Mice Model

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Stroke is considered as the second leading cause of death worldwide. The survivors of stroke experience different levels of impairment in brain function resulting in debilitating disabilities. Current therapies for stroke are primarily palliative and may be effective in only a small population of stroke patients. In this study, we explore the transplantation of exogenous neural stem cells (NSCs) as the potential therapy for the photothrombotic ischemia stroke in a Kunming mice model. After stroke, mice receiving NSC transplantation demonstrated a better recovery of brain function during the neurobehavioral tests. Histology analysis of the brain samples from NSC transplanted mice demonstrated a reduction of brain damage caused by stroke. Moreover, immunofluorescence assay for biomarkers in brain sections confirmed that transplanted NSCs indeed differentiated to neurons and astrocytes, consistent with the improved brain function after stroke. Taken together, our data suggested that exogenous NSC transplantation could be a promising therapy for stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Flynn RW, MacWalter RS, Doney AS (2008) The cost of cerebral ischaemia. Neuropharmacology 55:250–256

    Article  CAS  PubMed  Google Scholar 

  2. Sims NR, Muyderman H (2010) Mitochondria, oxidative metabolism and cell death in stroke. Biochim Biophys Acta 1802:80–91

    Article  CAS  PubMed  Google Scholar 

  3. Moskowitz MA, Lo EH, Iadecola C (2010) The science of stroke: mechanisms in search of treatments. Neuron 67:181–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sun C, Zhang H, Li J et al (2010) Modulation of the major histocompatibility complex by neural stem cell-derived neurotrophic factors used for regenerative therapy in a rat model of stroke. J Transl Med 8:77

    Article  PubMed  PubMed Central  Google Scholar 

  5. Doyle KP, Simon RP, Stenzel-Poore MP (2008) Mechanisms of ischemic brain damage. Neuropharmacology 55:310–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Allen CL, Bayraktutan U (2008) Risk factors for ischaemic stroke. Int J Stroke 3:105–116

    Article  PubMed  Google Scholar 

  7. Hankey GJ (2006) Potential new risk factors for ischemic stroke: what is their potential? Stroke 37:2181–2188

    Article  PubMed  Google Scholar 

  8. Lawes CM, Bennett DA, Feigin VL, Rodgers A (2004) Blood pressure and stroke: an overview of published reviews. Stroke 35:1024

    Article  PubMed  Google Scholar 

  9. Lawes CM, Parag V, Bennett DA et al (2004) Blood glucose and risk of cardiovascular disease in the Asia Pacific region. Diabetes Care 27:2836–2842

    Article  CAS  PubMed  Google Scholar 

  10. Amarenco P, Bogousslavsky J, Callahan A 3rd et al (2006) High-dose atorvastatin after stroke or transient ischemic attack. N Engl J Med 355:549–559

    Article  CAS  PubMed  Google Scholar 

  11. Bonita R, Duncan J, Truelsen T, Jackson RT, Beaglehole R (1999) Passive smoking as well as active smoking increases the risk of acute stroke. Tob Control 8:156–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bernard SA, Gray TW, Buist MD et al (2002) Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 346:557–563

    Article  PubMed  Google Scholar 

  13. Wagner KR, Zuccarello M (2005) Local brain hypothermia for neuroprotection in stroke treatment and aneurysm repair. Neurol Res 27:238–245

    Article  PubMed  Google Scholar 

  14. Semkova I, Krieglstein J (1999) Neuroprotection mediated via neurotrophic factors and induction of neurotrophic factors. Brain Res Brain Res Rev 30:176–188

    Article  CAS  PubMed  Google Scholar 

  15. Fletcher L, Kohli S, Sprague SM et al (2009) Intranasal delivery of erythropoietin plus insulin-like growth factor-I for acute neuroprotection in stroke. Laboratory investigation. J Neurosurg 111:164–170

    Article  CAS  PubMed  Google Scholar 

  16. Zhang ZG, Chopp M (2009) Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic. Lancet Neurol 8:0491–0500

    Article  Google Scholar 

  17. Koch P, Kokaia Z, Lindvall O, Brustle O (2009) Emerging concepts in neural stem cell research: autologous repair and cell-based disease modelling. Lancet Neurol 8:819–829

    Article  PubMed  Google Scholar 

  18. Deacon RM (2013) Measuring the strength of mice. J Vis Exp

  19. Labat-gest V, Tomasi S (2013) Photothrombotic ischemia: a minimally invasive and reproducible photochemical cortical lesion model for mouse stroke studies. J Vis Exp

  20. Watson DJ, Walton RM, Magnitsky SG et al (2006) Structure-specific patterns of neural stem cell engraftment after transplantation in the adult mouse brain. Hum Gene Ther 17:693–704

    Article  CAS  PubMed  Google Scholar 

  21. Sanai N, Alvarez-Buylla A, Berger MS (2005) Neural stem cells and the origin of gliomas. N Engl J Med 353:811–822

    Article  CAS  PubMed  Google Scholar 

  22. Karki R, Mariani M, Andreoli M et al (2013) betaIII-Tubulin: biomarker of taxane resistance or drug target? Expert Opin Ther Targets 17:461–472

    Article  CAS  PubMed  Google Scholar 

  23. Jacque CM, Vinner C, Kujas M et al (1978) Determination of glial fibrillary acidic protein (GFAP) in human brain tumors. J Neurol Sci 35:147–155

    Article  CAS  PubMed  Google Scholar 

  24. Roessmann U, Velasco ME, Sindely SD, Gambetti P (1980) Glial fibrillary acidic protein (GFAP) in ependymal cells during development. An immunocytochemical study. Brain Res 200:13–21

    Article  CAS  PubMed  Google Scholar 

  25. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–970

    Article  CAS  PubMed  Google Scholar 

  26. Parent JM, Vexler ZS, Gong C, Derugin N, Ferriero DM (2002) Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol 52:802–813

    Article  PubMed  Google Scholar 

  27. Howells DW, Porritt MJ, Rewell SS, O’Collins V, Sena ES, van der Worp HB, Traystman RJ, Macleod MR (2010) Different strokes for different folks: the rich diversity of animal models of focal cerebral ischemia. J Cereb Blood Flow Metab 30(8):1412–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fluri F, Schuhmann MK, Kleinschnitz C (2015) Animal models of ischemic stroke and their application in clinical research. Drug Des Devel Ther 9:3445–3454

    PubMed  PubMed Central  Google Scholar 

  29. Einstein O, Ben-Hur T (2008) The changing face of neural stem cell therapy in neurologic diseases. Arch Neurol 65(4):452–456

    Article  PubMed  Google Scholar 

  30. Vandeputte C, Reumers V, Aelvoet SA et al (2014) Bioluminescence imaging of stroke-induced endogenous neural stem cell response. Neurobiol Dis 69:144–155

    Article  CAS  PubMed  Google Scholar 

  31. Akesson E, Wolmer-Solberg N, Cederarv M, Falci S, Odeberg J (2009) Human neural stem cells and astrocytes, but not neurons, suppress an allogeneic lymphocyte response. Stem Cell Res 2(1):56–67

    Article  PubMed  Google Scholar 

  32. Kokaia Z, Darsalia V (2011) Neural stem cell-based therapy for ischemic stroke. Transl Stroke Res 2:272–278

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of Gansu, China (No. 1506RJZA222) and Lanzhou Science and Technology Bureau Project (2015-2-55).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shengxiang Zhang or Haijun Ren.

Ethics declarations

The animal procedures were approved by Ethics Committee of Experimental Animals of Lanzhou University, in accordance with the “Guidelines for Experimental Animals” of the Ministry of Science and Technology (Beijing, China). All surgeries were performed according to the recommendations proposed by the Ethics Committee of Experimental Animals of Lanzhou University, and all efforts were made to minimize suffering

Conflict of interest

None

Funding

This study was supported by National Natural Science Foundation of Gansu, China (No. 1506RJZA222) and Lanzhou Science and Technology Bureau Project (2015-2-55).

Additional information

Boru Hou, Junning Ma and Xiumei Guo contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, B., Ma, J., Guo, X. et al. Exogenous Neural Stem Cells Transplantation as a Potential Therapy for Photothrombotic Ischemia Stroke in Kunming Mice Model. Mol Neurobiol 54, 1254–1262 (2017). https://doi.org/10.1007/s12035-016-9740-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9740-6

Keywords

Navigation