Skip to main content
Log in

Protective Effect of a cAMP Analogue on Behavioral Deficits and Neuropathological Changes in Cuprizone Model of Demyelination

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is an inflammatory demyelinating disease that leads to neuronal cell loss. Cyclic AMP and its analogs are well known to decrease inflammation and apoptosis. In the present study, we examined the effects of bucladesine, a cell-permeable analogue of cyclic adenosine monophosphate (cAMP), on myelin proteins (PLP, PMP-22), inflammation, and apoptotic, as well as anti-apoptotic factors in cuprizone model of demyelination. C57BL/6J mice were fed with chow containing 0.2 % copper chelator cuprizone or vehicle by daily oral gavage for 5 weeks to induce reversible demyelination predominantly of the corpus callosum. Bucladesine was administered intraperitoneally at different doses (0.24, 0.48, or 0.7 μg/kg body weight) during the last 7 days of 5-week cuprizone treatment. Bucladesine exhibited a protective effect on myelination. Furthermore, bucladesine significantly decreased the production of interleukin-6 pro-inflammatory mediator as well as nuclear factor-κB activation and reduced the mean number of apoptotic cells compared to cuprizone-treated mice. Bucladesine also decreased production of caspase-3 as well as Bax and increased Bcl-2 levels. Our data revealed that enhancement of intracellular cAMP prevents demyelination and plays anti-inflammatory and anti-apoptotic properties in mice cuprizone model of demyelination. This suggests the modulation of intracellular cAMP as a potential target for treatment of MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AC:

Adenylyl cyclase

cAMP:

Cyclic adenosine monophosphate

CNS:

Central nervous system

ECL:

Electrochemiluminescence

DMSO:

Dimethyl sulfoxide

EAE:

Experimental autoimmune encephalomyelitis

ERK:

Extracellular signal-regulated kinases

H&E:

Hematoxylin and eosine

HO:

Heme oxygenase

IL-6:

Interleukin-6

LFB:

Luxol fast blue

MS:

Multiple sclerosis

NF-κB:

Nuclear factor-κB

OPCs:

Oligodendrocyte precursor cell

PFA:

Paraformaldehyde

PKA:

Protein kinase A

PNS:

Peripheral nervous system

PLP:

Proteolipid protein

PMP-22:

Peripheral myelin protein 22

TUNEL:

Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling

References

  1. Lassmann H, Bruck W, Lucchinetti CF (2007) The immunopathology of multiple sclerosis: an overview. Brain Pathol 17(2):210–8. doi:10.1111/j.1750-3639.2007.00064.x

    Article  PubMed  Google Scholar 

  2. Bruck W, Pfortner R, Pham T, Zhang J, Hayardeny L, Piryatinsky V, Hanisch UK, Regen T, van Rossum D, Brakelmann L, Hagemeier K, Kuhlmann T, Stadelmann C, John GR, Kramann N, Wegner C (2012) Reduced astrocytic NF-kappaB activation by laquinimod protects from cuprizone-induced demyelination. Acta Neuropathol 124(3):411–24. doi:10.1007/s00401-012-1009-1

    Article  PubMed  PubMed Central  Google Scholar 

  3. Skripuletz T, Bussmann JH, Gudi V, Koutsoudaki PN, Pul R, Moharregh-Khiabani D, Lindner M, Stangel M (2010) Cerebellar cortical demyelination in the murine cuprizone model. Brain Pathol 20(2):301–12. doi:10.1111/j.1750-3639.2009.00271.x

    Article  CAS  PubMed  Google Scholar 

  4. Kipp MT, Clarner J, Dang S, Copray S, Beyer C (2009) The cuprizone animal model: new insights into an old story. Acta Neuropathol 118(6):723–36. doi:10.1007/s00401-009-0591-3

    Article  PubMed  Google Scholar 

  5. Matsushima GK, Morell P (2001) The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol 11(1):107–16

    Article  CAS  PubMed  Google Scholar 

  6. Wergeland S, Torkildsen O, Myhr KM, Mork SJ, Bo L (2012) The cuprizone model: regional heterogeneity of pathology. APMIS 120(8):648–57. doi:10.1111/j.1600-0463.2012.02882.x

    Article  PubMed  Google Scholar 

  7. Kamenetsky M, Middelhaufe S, Bank EM, Levin LR, Buck J, Steegborn C (2006) Molecular details of cAMP generation in mammalian cells: a tale of two systems. J Mol Biol 362(4):623–39. doi:10.1016/j.jmb.2006.07.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Qiu J, Cai D, Dai H, McAtee M, Hoffman PN, Bregman BS, Filbin MT (2002) Spinal axon regeneration induced by elevation of cyclic AMP. Neuron 34(6):895–903. doi:10.1016/S0896-6273(02)00730-4

    Article  CAS  PubMed  Google Scholar 

  9. Wall EA, Zavzavadjian JR, Chang MS, Randhawa B, Zhu X, Hsueh RC, Liu J, Driver A, Bao XR, Sternweis PC, Simon MI, Fraser ID (2009) Suppression of LPS-induced TNF-alpha production in macrophages by cAMP is mediated by PKA-AKAP95-p105. Sci Signal 2(75):ra28. doi:10.1126/scisignal.2000202

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hamdi Y, Kaddour H, Vaudry D, Bahdoudi S, Douiri S, Leprince J, Castel H, Vaudry H, Tonon MC, Amri M, Masmoudi-Kouki O (2012) The octadecaneuropeptide ODN protects astrocytes against hydrogen peroxide-induced apoptosis via a PKA/MAPK-dependent mechanism. PLoS One 7(8):e42498. doi:10.1371/journal.pone.0042498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sharifzadeh M, Zamanian AR, Gholizadeh S, Tabrizian K, Etminani M, Khalaj S, Zarrindast MR, Roghani A (2007) Post-training intrahippocampal infusion of nicotine-bucladesine combination causes a synergistic enhancement effect on spatial memory retention in rats. Eur J Pharmacol 562(3):212–20. doi:10.1016/j.ejphar.2007.01.065

    Article  CAS  PubMed  Google Scholar 

  12. Khezri S, Javan M, Goudarzvand M, Semnanian S, Baharvand H (2013) Dibutyryl cyclic AMP inhibits the progression of experimental autoimmune encephalomyelitis and potentiates recruitment of endogenous neural stem cells. J Mol Neurosci 51(2):298–306. doi:10.1007/s12031-013-9959-x

    Article  CAS  PubMed  Google Scholar 

  13. Tilley DG, Maurice DH (2002) Vascular smooth muscle cell phosphodiesterase (PDE) 3 and PDE4 activities and levels are regulated by cyclic AMP in vivo. Mol Pharmacol 62(3):497–506. doi:10.1124/mol.62.3.497

    Article  CAS  PubMed  Google Scholar 

  14. Neumann S, Bradke F, Tessier-Lavigne M, Basbaum AI (2002) Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron 34(6):885–93. doi:10.1016/S0896-6273(02)00702-X

    Article  CAS  PubMed  Google Scholar 

  15. Salinthone S, Yadav V, Schillace RV, Bourdette DN, Carr DW (2010) Lipoic acid attenuates inflammation via cAMP and protein kinase A signaling. PLoS One 5(9):e13058. doi:10.1371/journal.pone.0013058

    Article  PubMed  PubMed Central  Google Scholar 

  16. Azami K, Etminani M, Tabrizian K, Salar F, Belaran M, Hosseini A, Hosseini-Sharifabad A, Sharifzadeh M (2010) The quantitative evaluation of cholinergic markers in spatial memory improvement induced by nicotine-bucladesine combination in rats. Eur J Pharmacol 636(1–3):102–7. doi:10.1016/j.ejphar.2010.03.041

    Article  CAS  PubMed  Google Scholar 

  17. Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463(1–3):3–33. doi:10.1016/S0014-2999(03)01272-X

    Article  CAS  PubMed  Google Scholar 

  18. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–54

    Article  CAS  PubMed  Google Scholar 

  19. Rong Y, Baudry M (1996) Seizure activity results in a rapid induction of nuclear factor-kappa B in adult but not juvenile rat limbic structures. J Neurochem 67(2):662–8. doi:10.1046/j.1471-4159.1996.67020662.x

    Article  CAS  PubMed  Google Scholar 

  20. Sadeghian H, Jafarian M, Karimzadeh F, Kafami L, Kazemi H, Coulon P, Ghabaee M, Gorji A (2012) Neuronal death by repetitive cortical spreading depression in juvenile rat brain. Exp Neurol 233(1):438–46. doi:10.1016/j.expneurol.2011.11.017

    Article  CAS  PubMed  Google Scholar 

  21. Capurso SA, Calhoun ME, Sukhov RR, Mouton PR, Price DL, Koliatsos VE (1997) Deafferentation causes apoptosis in cortical sensory neurons in the adult rat. J Neurosci 17(19):7372–84

    CAS  PubMed  Google Scholar 

  22. Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147(4):742–58. doi:10.1016/j.cell.2011.10.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zimmermann KC, Green DR (2001) How cells die: apoptosis pathways. J Allergy Clin Immunol 108(4 Suppl):S99–103. doi:10.1067/mai.2001.117819

    Article  CAS  PubMed  Google Scholar 

  24. Desagher S, Osen-Sand A, Nichols A, Eskes R, Montessuit S, Lauper S, Maundrell K, Antonsson B, Martinou JC (1999) Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 144(5):891–901. doi:10.1083/jcb.144.5.891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Negron JF, Lockshin RA (2004) Activation of apoptosis and caspase-3 in zebrafish early gastrulae. Dev Dyn 231(1):161–70. doi:10.1002/dvdy.20124

    Article  CAS  PubMed  Google Scholar 

  26. Karimzadeh F, Jafarian M, Gharakhani M, Razeghi Jahromi S, Mohamadzadeh E, Khallaghi B, Kolivand PH, Kazemi H, Coulon P, Gorji A (2013) Behavioural and histopathological assessment of the effects of periodic fasting on pentylenetetrazol-induced seizures in rats. Nutr Neurosci 16(4):147–52. doi:10.1179/1476830512Y.0000000039

    Article  CAS  PubMed  Google Scholar 

  27. Raasch J, Zeller N, van Loo G, Merkler D, Mildner A, Erny D, Knobeloch KP, Bethea JR, Waisman A, Knust M, Del Turco D, Deller T, Blank T, Priller J, Brück W, Pasparakis M, Prinz M (2011) IkappaB kinase 2 determines oligodendrocyte loss by non-cell-autonomous activation of NF-kappaB in the central nervous system. Brain 134(Pt 4):1184–98. doi:10.1093/brain/awq359

    Article  PubMed  PubMed Central  Google Scholar 

  28. van der Poll T, Keogh CV, Guirao X, Buurman WA, Kopf M, Lowry SF (1997) Interleukin-6 gene-deficient mice show impaired defense against pneumococcal pneumonia. J Infect Dis 176(2):439–44. doi:10.1086/514062

    Article  PubMed  Google Scholar 

  29. Yoshikawa K, Palumbo S, Toscano CD, Bosetti F (2011) Inhibition of 5-lipoxygenase activity in mice during cuprizone-induced demyelination attenuates neuroinflammation, motor dysfunction and axonal damage. Prostaglandins Leukot Essent Fat Acids 85(1):43–52. doi:10.1016/j.plefa.2011.04.022

    Article  CAS  Google Scholar 

  30. Gijbels K, Van Damme J, Proost P, Put W, Carton H, Billiau A (1990) Interleukin 6 production in the central nervous system during experimental autoimmune encephalomyelitis. Eur J Immunol 20(1):233–5. doi:10.1002/eji.1830200134

    Article  CAS  PubMed  Google Scholar 

  31. Agnello D, Bigini P, Villa P, Mennini T, Cerami A, Brines ML, Ghezzi P (2002) Erythropoietin exerts an anti-inflammatory effect on the CNS in a model of experimental autoimmune encephalomyelitis. Brain Res 952(1):128–34. doi:10.1016/S0006-8993(02)03239-0

    Article  CAS  PubMed  Google Scholar 

  32. Kikuchi G, Yoshida T, Noguchi M (2005) Heme oxygenase and heme degradation. Biochem Biophys Res Commun 338(1):558–67. doi:10.1016/j.bbrc.2005.08.020

    Article  CAS  PubMed  Google Scholar 

  33. Otterbein LE, Soares MP, Yamashita K, Bach FH (2003) Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol 24(8):449–55. doi:10.1016/S1471-4906(03)00181-9

    Article  CAS  PubMed  Google Scholar 

  34. Schipper HM (1999) Glial HO-1 expression, iron deposition and oxidative stress in neurodegenerative diseases. Neurotox Res 1(1):57–70. doi:10.1007/BF03033339

    Article  CAS  PubMed  Google Scholar 

  35. Willis D, Moore AR, Frederick R, Willoughby DA (1996) Heme oxygenase: a novel target for the modulation of the inflammatory response. Nat Med 2(1):87–90. doi:10.1038/nm0196-87

    Article  CAS  PubMed  Google Scholar 

  36. Liebetanz D, Merkler D (2006) Effects of commissural de- and remyelination on motor skill behaviour in the cuprizone mouse model of multiple sclerosis. Exp Neurol 202(1):217–24. doi:10.1016/j.expneurol.2006.05.032

    Article  CAS  PubMed  Google Scholar 

  37. Franco-Pons N, Torrente M, Colomina MT, Vilella E (2007) Behavioral deficits in the cuprizone-induced murine model of demyelination/remyelination. Toxicol Lett 169(3):205–13. doi:10.1016/j.toxlet.2007.01.010

    Article  CAS  PubMed  Google Scholar 

  38. Rahn EJ, Iannitti T, Donahue RR, Taylor BK (2014) Sex differences in a mouse model of multiple sclerosis: neuropathic pain behavior in females but not males and protection from neurological deficits during proestrus. Biol Sex Differ 5(1):4. doi:10.1186/2042-6410-5-4

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jessen KR, Mirsky R (2010) Control of Schwann cell myelination. Biol Rep 2:19. doi: 10.3410/B2-19

  40. Sun X, Liu Y, Liu B, Xiao Z, Zhang L (2012) Rolipram promotes remyelination possibly via MEK-ERK signal pathway in cuprizone-induced demyelination mouse. Exp Neurol 237(2):304–11. doi:10.1016/j.expneurol.2012.07.011

    Article  CAS  PubMed  Google Scholar 

  41. Syed YA, Baer A, Hofer MP, González GA, Rundle J, Myrta S, Huang JK, Zhao C, Rossner MJ, Trotter MW, Lubec G, Franklin RJ, Kotter MR (2013) Inhibition of phosphodiesterase-4 promotes oligodendrocyte precursor cell differentiation and enhances CNS remyelination. EMBO Mol Med 5(12):1918–34. doi:10.1002/emmm.201303123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Buschmann JP, Berger K, Awad H, Clarner T, Beyer C, Kipp M (2012) Inflammatory response and chemokine expression in the white matter corpus callosum and gray matter cortex region during cuprizone-induced demyelination. J Mol Neurosci 48(1):66–76. doi:10.1007/s12031-012-9773-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hesse A, Wagner M, Held J, Brück W, Salinas-Riester G, Hao Z, Waisman A, Kuhlmann T (2010) In toxic demyelination oligodendroglial cell death occurs early and is FAS independent. Neurobiol Dis 37(2):362–9. doi:10.1016/j.nbd.2009.10.016

    Article  CAS  PubMed  Google Scholar 

  44. Maines MD (1997) The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 37:517–54. doi:10.1146/annurev.pharmtox.37.1.517

    Article  CAS  PubMed  Google Scholar 

  45. Ponka P (1999) Cell biology of heme. Am J Med Sci 318(4):241–56

    Article  CAS  PubMed  Google Scholar 

  46. Lee PJ, Alam J, Wiegand GW, Choi AM (1996) Overexpression of heme oxygenase-1 in human pulmonary epithelial cells results in cell growth arrest and increased resistance to hyperoxia. Proc Natl Acad Sci U S A 93(19):10393–8, PMCID: PMC38395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Park SY, Kim JH, Lee SJ, Kim Y (2013) Involvement of PKA and HO-1 signaling in anti-inflammatory effects of surfactin in BV-2 microglial cells. Toxicol Appl Pharmacol 268(1):68–78. doi:10.1016/j.taap.2013.01.017

    Article  CAS  PubMed  Google Scholar 

  48. Bellezza I, Tucci A, Galli F, Grottelli S, Mierla AL, Pilolli F, Minelli A (2012) Inhibition of NF-kappaB nuclear translocation via HO-1 activation underlies alpha-tocopheryl succinate toxicity. J Nutr Biochem 23(12):1583–91. doi:10.1016/j.jnutbio.2011.10.012

    Article  CAS  PubMed  Google Scholar 

  49. Brambilla R, Hurtado A, Persaud T, Esham K, Pearse DD, Oudega M, Bethea JR (2009) Transgenic inhibition of astroglial NF-kappa B leads to increased axonal sparing and sprouting following spinal cord injury. J Neurochem 110(2):765–78. doi:10.1111/j.1471-4159.2009.06190.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Takahashi N, Tetsuka T, Uranishi H, Okamoto T (2002) Inhibition of the NF-kappaB transcriptional activity by protein kinase A. Eur J Biochem 269(18):4559–65. doi:10.1046/j.1432-1033.2002.03157.x

    Article  CAS  PubMed  Google Scholar 

  51. Milne GR, Palmer TM (2011) Anti-inflammatory and immunosuppressive effects of the A2A adenosine receptor. ScientificWorldJournal 11:320–39. doi:10.1100/tsw.2011.22

    Article  CAS  PubMed  Google Scholar 

  52. Cheng B, Guo Y, Li C, Ji B, Pan Y, Chen J, Bai B (2014) Edaravone protected PC12 cells against MPP(+)-cytoxicity via inhibiting oxidative stress and up-regulating heme oxygenase-1 expression. J Neurol Sci 343:115–9. doi:10.1016/j.jns.2014.05.051

    Article  CAS  PubMed  Google Scholar 

  53. Brito GA, Saraiva SN, Falcão JL, Vale ML, Lima AA, Cunha FQ, Ribeiro RA (2001) Dual effect of cAMP on the writhing response in mice. Eur J Pharmacol 416:223–30. doi:10.1016/S0014-2999(01)00813-5

    Article  CAS  PubMed  Google Scholar 

  54. Tamotsu S, Schomerus C, Stehle JH, Roseboom PH, Korf HW (1995) Norepinephrine-induced phosphorylation of the transcription factor CREB in isolated rat pinealocytes: an immunocytochemical study. Cell Tissue Res 282:219–26. doi:10.1007/BF00319113

    Article  CAS  PubMed  Google Scholar 

  55. Bronnikov GE, Zhang SJ, Cannon B, Nedergaard J (1999) A dual component analysis explains the distinctive kinetics of cAMP accumulation in brown adipocytes. J Biol Chem 274:37770–80. doi:10.1074/jbc.274.53.37770

    Article  CAS  PubMed  Google Scholar 

  56. Hotte M, Dauphin F, Freret T, Boulouard M, Levallet G (2012) A biphasic and brain-region selective down-regulation of cyclic adenosine monophosphate concentrations supports object recognition in the rat. PLoS One 7:e32244. doi:10.1371/journal.pone.0032244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim D, Kwon YK, Cho KH (2008) The biphasic behavior of incoherent feed-forward loops in biomolecular regulatory networks. Bioessays 30:1204–11. doi:10.1002/bies.20839

    Article  CAS  PubMed  Google Scholar 

  58. Yang J, Zhang L, Yu C, Yang XF, Wang H (2014) Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res 2:1. doi:10.1186/2050-7771-2-1

    Article  PubMed  PubMed Central  Google Scholar 

  59. Larochelle C, Alvarez JI, Prat A (2011) How do immune cells overcome the blood-brain barrier in multiple sclerosis? FEBS Lett 585:3770–80. doi:10.1016/j.febslet.2011.04.066

    Article  CAS  PubMed  Google Scholar 

  60. Kusaka H, Hirano A, Bornstein MB, Moore GR, Raine CS (1986) Transformation of cells of astrocyte lineage into macrophage-like cells in organotypic cultures of mouse spinal cord tissue. J Neurol Sci 72:77–89

    Article  CAS  PubMed  Google Scholar 

  61. Garman RH (2010) Histology of the central nervous system. Toxicol Pathol 39:22–35. doi:10.1177/0192623310389621

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Iran National Science Foundation, Tehran University of Medical Sciences, and Shefa Neuroscience Research Center (Doctoral thesis 27165) for their financial supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Gorji or Mohammad Sharifzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vakilzadeh, G., Khodagholi, F., Ghadiri, T. et al. Protective Effect of a cAMP Analogue on Behavioral Deficits and Neuropathological Changes in Cuprizone Model of Demyelination. Mol Neurobiol 52, 130–141 (2015). https://doi.org/10.1007/s12035-014-8857-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8857-8

Keywords

Navigation