Skip to main content

Advertisement

Log in

Imaging Functional and Structural Brain Connectomics in Attention-Deficit/Hyperactivity Disorder

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopment disorders in childhood. Clinically, the core symptoms of this disorder include inattention, hyperactivity, and impulsivity. Previous studies have documented that these behavior deficits in ADHD children are associated with not only regional brain abnormalities but also changes in functional and structural connectivity among regions. In the past several years, our understanding of how ADHD affects the brain’s connectivity has been greatly advanced by mapping topological alterations of large-scale brain networks (i.e., connectomes) using noninvasive neurophysiological and neuroimaging techniques (e.g., electroencephalograph, functional MRI, and diffusion MRI) in combination with graph theoretical approaches. In this review, we summarize the recent progresses of functional and structural brain connectomics in ADHD, focusing on graphic analysis of large-scale brain systems. Convergent evidence suggests that children with ADHD had abnormal small-world properties in both functional and structural brain networks characterized by higher local clustering and lower global integrity, suggesting a disorder-related shift of network topology toward regular configurations. Moreover, ADHD children showed the redistribution of regional nodes and connectivity involving the default-mode, attention, and sensorimotor systems. Importantly, these ADHD-associated alterations significantly correlated with behavior disturbances (e.g., inattention and hyperactivity/impulsivity symptoms) and exhibited differential patterns between clinical subtypes. Together, these connectome-based studies highlight brain network dysfunction in ADHD, thus opening up a new window into our understanding of the pathophysiological mechanisms of this disorder. These works might also have important implications on the development of imaging-based biomarkers for clinical diagnosis and treatment evaluation in ADHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. American Psychiatric Association., American Psychiatric Association. DSM-5 Task Force. (2013) Diagnostic and statistical manual of mental disorders DSM-5. American Psychiatric Association,. http://proxy.med.sc.edu/login?url=http://psychiatryonline.org/book.aspx?bookid=556.

  2. Swanson JM, Sergeant JA, Taylor E, Sonuga-Barke EJ, Jensen PS, Cantwell DP (1998) Attention-deficit hyperactivity disorder and hyperkinetic disorder. Lancet 351(9100):429–433

    CAS  PubMed  Google Scholar 

  3. De La Fuente A, Xia S, Branch C, Li X (2013) A review of attention-deficit/hyperactivity disorder from the perspective of brain networks. Front Human Neurosci 7:192. doi:10.3389/fnhum.2013.00192

    Google Scholar 

  4. Durston S, van Belle J, de Zeeuw P (2011) Differentiating frontostriatal and fronto-cerebellar circuits in attention-deficit/hyperactivity disorder. Biol Psychiatr 69(12):1178–1184. doi:10.1016/j.biopsych.2010.07.037

    Google Scholar 

  5. Konrad K, Eickhoff SB (2010) Is the ADHD brain wired differently? A review on structural and functional connectivity in attention deficit hyperactivity disorder. Human Brain Map 31(6):904–916. doi:10.1002/hbm.21058

    Google Scholar 

  6. Liston C, Malter Cohen M, Teslovich T, Levenson D, Casey BJ (2011) Atypical prefrontal connectivity in attention-deficit/hyperactivity disorder: pathway to disease or pathological end point? Biol Psychiatr 69(12):1168–1177. doi:10.1016/j.biopsych.2011.03.022

    Google Scholar 

  7. Bush G (2011) Cingulate, frontal, and parietal cortical dysfunction in attention-deficit/hyperactivity disorder. Biol Psychiatr 69(12):1160–1167. doi:10.1016/j.biopsych.2011.01.022

    Google Scholar 

  8. Bush G, Valera EM, Seidman LJ (2005) Functional neuroimaging of attention-deficit/hyperactivity disorder: a review and suggested future directions. Biol Psychiatr 57(11):1273–1284. doi:10.1016/j.biopsych.2005.01.034

    Google Scholar 

  9. Cubillo A, Halari R, Smith A, Taylor E, Rubia K (2012) A review of fronto-striatal and fronto-cortical brain abnormalities in children and adults with attention deficit hyperactivity disorder (ADHD) and new evidence for dysfunction in adults with ADHD during motivation and attention Cortex. J Devoted Study Nerv Syst Behav 48(2):194–215. doi:10.1016/j.cortex.2011.04.007

    Google Scholar 

  10. Shaw P, Lerch J, Greenstein D, Sharp W, Clasen L, Evans A, Giedd J, Castellanos FX, Rapoport J (2006) Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with attention-deficit/hyperactivity disorder. Archiv Gen Psychiatr 63(5):540–549. doi:10.1001/archpsyc.63.5.540

    Google Scholar 

  11. Shaw P, Gilliam M, Liverpool M, Weddle C, Malek M, Sharp W, Greenstein D, Evans A, Rapoport J, Giedd J (2011) Cortical development in typically developing children with symptoms of hyperactivity and impulsivity: support for a dimensional view of attention deficit hyperactivity disorder. Am J Psychiatr 168(2):143–151. doi:10.1176/appi.ajp.2010.10030385

    PubMed Central  PubMed  Google Scholar 

  12. Seidman LJ, Valera EM, Makris N (2005) Structural brain imaging of attention-deficit/hyperactivity disorder. Biol Psychiatr 57(11):1263–1272. doi:10.1016/j.biopsych.2004.11.019

    Google Scholar 

  13. Cubillo A, Rubia K (2010) Structural and functional brain imaging in adult attention-deficit/hyperactivity disorder. Expert Rev Neurotherapeut 10(4):603–620. doi:10.1586/ern.10.4

    Google Scholar 

  14. Cubillo A, Halari R, Giampietro V, Taylor E, Rubia K (2011) Fronto-striatal underactivation during interference inhibition and attention allocation in grown up children with attention deficit/hyperactivity disorder and persistent symptoms. Psychiatr Res 193(1):17–27. doi:10.1016/j.pscychresns.2010.12.014

    Google Scholar 

  15. Bush G (2010) Attention-deficit/hyperactivity disorder and attention networks. Neuropsychopharmacol: Off Publ Am College Neuropsychopharmacol 35(1):278–300. doi:10.1038/npp.2009.120

    Google Scholar 

  16. Tian L, Jiang T, Wang Y, Zang Y, He Y, Liang M, Sui M, Cao Q, Hu S, Peng M, Zhuo Y (2006) Altered resting-state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder. Neurosci Lett 400(1–2):39–43. doi:10.1016/j.neulet.2006.02.022

    CAS  PubMed  Google Scholar 

  17. McCarthy H, Skokauskas N, Mulligan A, Donohoe G, Mullins D, Kelly J, Johnson K, Fagan A, Gill M, Meaney J, Frodl T (2013) Attention network hypoconnectivity with default and affective network hyperconnectivity in adults diagnosed with attention-deficit/hyperactivity disorder in childhood. JAMA Psychiatr 70(12):1329–1337. doi:10.1001/jamapsychiatry.2013.2174

    Google Scholar 

  18. Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, Beckmann CF, Adelstein JS, Buckner RL, Colcombe S, Dogonowski AM, Ernst M, Fair D, Hampson M, Hoptman MJ, Hyde JS, Kiviniemi VJ, Kotter R, Li SJ, Lin CP, Lowe MJ, Mackay C, Madden DJ, Madsen KH, Margulies DS, Mayberg HS, McMahon K, Monk CS, Mostofsky SH, Nagel BJ, Pekar JJ, Peltier SJ, Petersen SE, Riedl V, Rombouts SA, Rypma B, Schlaggar BL, Schmidt S, Seidler RD, Siegle GJ, Sorg C, Teng GJ, Veijola J, Villringer A, Walter M, Wang L, Weng XC, Whitfield-Gabrieli S, Williamson P, Windischberger C, Zang YF, Zhang HY, Castellanos FX, Milham MP (2010) Toward discovery science of human brain function. Proc Natl Acad Sci U S A 107(10):4734–4739. doi:10.1073/pnas.0911855107

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Sporns O, Tononi G, Kotter R (2005) The human connectome: a structural description of the human brain. PLoS Computat Biol 1(4):e42. doi:10.1371/journal.pcbi.0010042

    Google Scholar 

  20. Sporns O (2011) The human connectome: a complex network. Ann N Y Acad Sci 1224:109–125. doi:10.1111/j.1749-6632.2010.05888.x

    PubMed  Google Scholar 

  21. He Y, Evans A (2010) Graph theoretical modeling of brain connectivity. Curr Opin Neurol 23(4):341–350. doi:10.1097/WCO.0b013e32833aa567

    PubMed  Google Scholar 

  22. Bullmore ET, Bassett DS (2011) Brain graphs: graphical models of the human brain connectome. Ann Rev Clin Psychol 7:113–140. doi:10.1146/annurev-clinpsy-040510-143934

    Google Scholar 

  23. Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13(5):336–349. doi:10.1038/nrn3214

    CAS  PubMed  Google Scholar 

  24. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52(3):1059–1069. doi:10.1016/j.neuroimage.2009.10.003

    PubMed  Google Scholar 

  25. Ahmadlou M, Adeli H, Adeli A (2012) Graph theoretical analysis of organization of functional brain networks in ADHD. Clin EEG Neurosci 43(1):5–13. doi:10.1177/1550059411428555

    PubMed  Google Scholar 

  26. Ahmadlou M, Rostami R, Sadeghi V (2012) Which attention-deficit/hyperactivity disorder children will be improved through neurofeedback therapy? A graph theoretical approach to neocortex neuronal network of ADHD. Neurosci Lett 516(1):156–160. doi:10.1016/j.neulet.2012.03.087

    CAS  PubMed  Google Scholar 

  27. Cao Q, Shu N, An L, Wang P, Sun L, Xia MR, Wang JH, Gong GL, Zang YF, Wang YF, He Y (2013) Probabilistic diffusion tractography and graph theory analysis reveal abnormal white matter structural connectivity networks in drug-naive boys with attention deficit/hyperactivity disorder. J Neurosci Off J Soc Neurosci 33(26):10676–10687. doi:10.1523/JNEUROSCI.4793-12.2013

    CAS  Google Scholar 

  28. Cocchi L, Bramati IE, Zalesky A, Furukawa E, Fontenelle LF, Moll J, Tripp G, Mattos P (2012) Altered functional brain connectivity in a non-clinical sample of young adults with attention-deficit/hyperactivity disorder. J Neurosci Off J Soc Neurosci 32(49):17753–17761. doi:10.1523/JNEUROSCI.3272-12.2012

    CAS  Google Scholar 

  29. Di Martino A, Zuo XN, Kelly C, Grzadzinski R, Mennes M, Schvarcz A, Rodman J, Lord C, Castellanos FX, Milham MP (2013) Shared and distinct intrinsic functional network centrality in autism and attention-deficit/hyperactivity disorder. Biol Psychiatr 74(8):623–632. doi:10.1016/j.biopsych.2013.02.011

    Google Scholar 

  30. Fair DA, Nigg JT, Iyer S, Bathula D, Mills KL, Dosenbach NU, Schlaggar BL, Mennes M, Gutman D, Bangaru S, Buitelaar JK, Dickstein DP, Di Martino A, Kennedy DN, Kelly C, Luna B, Schweitzer JB, Velanova K, Wang YF, Mostofsky S, Castellanos FX, Milham MP (2012) Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data. Front Syst Neurosci 6:80. doi:10.3389/fnsys.2012.00080

    PubMed Central  PubMed  Google Scholar 

  31. Fair DA, Posner J, Nagel BJ, Bathula D, Dias TG, Mills KL, Blythe MS, Giwa A, Schmitt CF, Nigg JT (2010) Atypical default network connectivity in youth with attention-deficit/hyperactivity disorder. Biolog Psych 68(12):1084–1091. doi:10.1016/j.biopsych.2010.07.003

    Google Scholar 

  32. Tomasi D, Volkow ND (2012) Abnormal functional connectivity in children with attention-deficit/hyperactivity disorder. Biol Psychiatr 71(5):443–450. doi:10.1016/j.biopsych.2011.11.003

    Google Scholar 

  33. Wang L, Zhu C, He Y, Zang Y, Cao Q, Zhang H, Zhong Q, Wang Y (2009) Altered small-world brain functional networks in children with attention-deficit/hyperactivity disorder. Hum Brain Mapp 30(2):638–649. doi:10.1002/hbm.20530

    CAS  PubMed  Google Scholar 

  34. Hong SB, Zalesky A, Fornito A, Park S, Yang YH, Park MH, Song IC, Sohn CH, Shin MS, Kim BN, Cho SC, Han DH, Cheong JH, Kim JW (2014) Connectomic disturbances in attention deficit/hyperactivity disorder: a whole brain tractography analysis. Biological psychiatry Accepted

  35. Colby JB, Rudie JD, Brown JA, Douglas PK, Cohen MS, Shehzad Z (2012) Insights into multimodal imaging classification of ADHD. Front Syst Neurosci 6:59. doi:10.3389/fnsys.2012.00059

    PubMed Central  PubMed  Google Scholar 

  36. He Y, Chen ZJ, Evans AC (2007) Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex 17(10):2407–2419. doi:10.1093/cercor/bhl149

    PubMed  Google Scholar 

  37. Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A (2008) Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci Off J Soc Neurosci 28(37):9239–9248. doi:10.1523/JNEUROSCI.1929-08.2008

    CAS  Google Scholar 

  38. Chen ZJ, He Y, Rosa-Neto P, Germann J, Evans AC (2008) Revealing modular architecture of human brain structural networks by using cortical thickness from MRI. Cereb Cortex 18(10):2374–2381. doi:10.1093/cercor/bhn003

    PubMed Central  PubMed  Google Scholar 

  39. Gong G, He Y, Concha L, Lebel C, Gross DW, Evans AC, Beaulieu C (2009) Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb Cortex 19(3):524–536. doi:10.1093/cercor/bhn102

    PubMed Central  PubMed  Google Scholar 

  40. Hagmann P, Kurant M, Gigandet X, Thiran P, Wedeen VJ, Meuli R, Thiran JP (2007) Mapping human whole-brain structural networks with diffusion MRI. PloS one 2(7):e597. doi:10.1371/journal.pone.0000597

    PubMed Central  PubMed  Google Scholar 

  41. Le Bihan D (2003) Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 4(6):469–480. doi:10.1038/nrn1119

    PubMed  Google Scholar 

  42. Iturria-Medina Y, Sotero RC, Canales-Rodriguez EJ, Aleman-Gomez Y, Melie-Garcia L (2008) Studying the human brain anatomical network via diffusion-weighted MRI and graph theory. NeuroImage 40(3):1064–1076. doi:10.1016/j.neuroimage.2007.10.060

    PubMed  Google Scholar 

  43. Friston KJ, Frith CD, Liddle PF, Frackowiak RS (1993) Functional connectivity: the principal-component analysis of large (PET) data sets. J Cerebral Blood Flow Metabol: Off J Int Soc Cereb Blood Flow Metabol 13(1):5–14. doi:10.1038/jcbfm.1993.4

    CAS  Google Scholar 

  44. Niu H, He Y (2013) Resting-state functional brain connectivity: lessons from functional near-infrared spectroscopy. Neuroscient: Rev J Bring Neurobiol, Neurol Psychiatr. doi:10.1177/1073858413502707

    Google Scholar 

  45. Sporns O (2013) Structure and function of complex brain networks. Dialog Clin Neurosci 15(3):247–262

    Google Scholar 

  46. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D (2006) Complex networks: structure and dynamics. Phys Rep 424(4–5):175–308. doi:10.1016/j.physrep.2005.10.009

    Google Scholar 

  47. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–442. doi:10.1038/30918

    CAS  PubMed  Google Scholar 

  48. Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Physical review letters 87 (19). doi:10.1103/PhysRevLett.87.198701

  49. Latora V, Marchiori M (2003) Economic small-world behavior in weighted networks. Eur Phys J B-Condens Matt 32(2):249–263. doi:10.1140/epjb/e2003-00095-5

    CAS  Google Scholar 

  50. Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional networks. PLoS Computat Biol 3(2):e17. doi:10.1371/journal.pcbi.0030017

    Google Scholar 

  51. Bonacich P (1972) Factoring and weighting approaches to status scores and clique identification. J Math Soc 2(1):113–120. doi:10.1080/0022250x.1972.9989806

    Google Scholar 

  52. Zuo XN, Ehmke R, Mennes M, Imperati D, Castellanos FX, Sporns O, Milham MP (2012) Network centrality in the human functional connectome. Cereb Cortex 22(8):1862–1875. doi:10.1093/cercor/bhr269

    PubMed  Google Scholar 

  53. Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E (2005) Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 15(9):1332–1342. doi:10.1093/cercor/bhi016

    PubMed  Google Scholar 

  54. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6(7):e159. doi:10.1371/journal.pbio.0060159

    PubMed Central  PubMed  Google Scholar 

  55. van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci Off J Soc Neurosci 31(44):15775–15786. doi:10.1523/JNEUROSCI.3539-11.2011

    Google Scholar 

  56. Fornito A, Zalesky A, Bassett DS, Meunier D, Ellison-Wright I, Yucel M, Wood SJ, Shaw K, O’Connor J, Nertney D, Mowry BJ, Pantelis C, Bullmore ET (2011) Genetic influences on cost-efficient organization of human cortical functional networks. J Neurosci Off J Soc Neurosci 31(9):3261–3270. doi:10.1523/JNEUROSCI.4858-10.2011

    CAS  Google Scholar 

  57. Schmitt JE, Lenroot RK, Wallace GL, Ordaz S, Taylor KN, Kabani N, Greenstein D, Lerch JP, Kendler KS, Neale MC, Giedd JN (2008) Identification of genetically mediated cortical networks: a multivariate study of pediatric twins and siblings. Cereb Cortex 18(8):1737–1747. doi:10.1093/cercor/bhm211

    CAS  PubMed Central  PubMed  Google Scholar 

  58. van den Heuvel MP, van Soelen IL, Stam CJ, Kahn RS, Boomsma DI, Hulshoff Pol HE (2013) Genetic control of functional brain network efficiency in children. Eur Neuropsychopharmacol: J Eur College Neuropsychopharmacol 23(1):19–23. doi:10.1016/j.euroneuro.2012.06.007

    Google Scholar 

  59. Fair DA, Cohen AL, Power JD, Dosenbach NU, Church JA, Miezin FM, Schlaggar BL, Petersen SE (2009) Functional brain networks develop from a “local to distributed” organization. PLoS Computat Biol 5(5):e1000381. doi:10.1371/journal.pcbi.1000381

    Google Scholar 

  60. Supekar K, Musen M, Menon V (2009) Development of large-scale functional brain networks in children. PLoS Biol 7(7):e1000157. doi:10.1371/journal.pbio.1000157

    PubMed Central  PubMed  Google Scholar 

  61. Dennis EL, Jahanshad N, McMahon KL, de Zubicaray GI, Martin NG, Hickie IB, Toga AW, Wright MJ, Thompson PM (2013) Development of brain structural connectivity between ages 12 and 30: a 4-Tesla diffusion imaging study in 439 adolescents and adults. NeuroImage 64:671–684. doi:10.1016/j.neuroimage.2012.09.004

    PubMed Central  PubMed  Google Scholar 

  62. Fan Y, Shi F, Smith JK, Lin W, Gilmore JH, Shen D (2011) Brain anatomical networks in early human brain development. NeuroImage 54(3):1862–1871. doi:10.1016/j.neuroimage.2010.07.025

    PubMed Central  PubMed  Google Scholar 

  63. Chen ZJ, He Y, Rosa-Neto P, Gong G, Evans AC (2011) Age-related alterations in the modular organization of structural cortical network by using cortical thickness from MRI. NeuroImage 56(1):235–245. doi:10.1016/j.neuroimage.2011.01.010

    PubMed  Google Scholar 

  64. Gong G, Rosa-Neto P, Carbonell F, Chen ZJ, He Y, Evans AC (2009) Age- and gender-related differences in the cortical anatomical network. J Neurosci Off J Soc Neurosci 29(50):15684–15693. doi:10.1523/JNEUROSCI.2308-09.2009

    CAS  Google Scholar 

  65. He Y, Chen Z, Gong G, Evans A (2009) Neuronal networks in Alzheimer’s disease. Neuroscient: Rev J Bring Neurobiol, Neurol Psychiatr 15(4):333–350. doi:10.1177/1073858409334423

    Google Scholar 

  66. Xie T, He Y (2011) Mapping the Alzheimer’s brain with connectomics. Front Psychiatr 2:77. doi:10.3389/fpsyt.2011.00077

    Google Scholar 

  67. Tijms BM, Wink AM, de Haan W, van der Flier WM, Stam CJ, Scheltens P, Barkhof F (2013) Alzheimer’s disease: connecting findings from graph theoretical studies of brain networks. Neurobiol Aging 34(8):2023–2036. doi:10.1016/j.neurobiolaging.2013.02.020

    PubMed  Google Scholar 

  68. van den Heuvel MP, Sporns O, Collin G, Scheewe T, Mandl RC, Cahn W, Goni J, Hulshoff Pol HE, Kahn RS (2013) Abnormal rich club organization and functional brain dynamics in schizophrenia. JAMA Psychiatry 70(8):783–792. doi:10.1001/jamapsychiatry.2013.1328

    PubMed  Google Scholar 

  69. Fornito A, Zalesky A, Breakspear M (2013) Graph analysis of the human connectome: promise, progress, and pitfalls. NeuroImage 80:426–444. doi:10.1016/j.neuroimage.2013.04.087

    PubMed  Google Scholar 

  70. Rubinov M, Bullmore E (2013) Fledgling pathoconnectomics of psychiatric disorders. Trend Cognitive Sci 17(12):641–647. doi:10.1016/j.tics.2013.10.007

    Google Scholar 

  71. Stam CJ (2004) Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’ network? Neurosci Lett 355(1–2):25–28

    CAS  PubMed  Google Scholar 

  72. Micheloyannis S, Pachou E, Stam CJ, Vourkas M, Erimaki S, Tsirka V (2006) Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis. Neurosci Lett 402(3):273–277. doi:10.1016/j.neulet.2006.04.006

    CAS  PubMed  Google Scholar 

  73. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional Connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnet Reson Med 34(4):537–541

    CAS  Google Scholar 

  74. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26(1):63–72. doi:10.1523/JNEUROSCI.3874-05.2006

    CAS  PubMed  Google Scholar 

  75. Cao M, Wang JH, Dai ZJ, Cao XY, Jiang LL, Fan FM, Song XW, Xia MR, Shu N, Dong Q, Milham MP, Castellanos FX, Zuo XN, He Y (2014) Topological organization of the human brain functional connectome across the lifespan. Develop Cognit Neurosci 7(1):76–93. doi:10.1016/j.dcn.2013.11.004

    Google Scholar 

  76. Raichle ME, Snyder AZ (2007) A default mode of brain function: a brief history of an evolving idea. NeuroImage 37(4):1083–1090. doi:10.1016/j.neuroimage.2007.02.041, discussion 1097-1089

    PubMed  Google Scholar 

  77. The ADHD-200 Consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience (2012). Frontiers in systems neuroscience 6:62. doi:10.3389/fnsys.2012.00062

  78. Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar CN, Barnes KA, Dubis JW, Feczko E, Coalson RS, Pruett JR Jr, Barch DM, Petersen SE, Schlaggar BL (2010) Prediction of individual brain maturity using fMRI. Science 329(5997):1358–1361. doi:10.1126/science.1194144

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Van Dijk KR, Sabuncu MR, Buckner RL (2012) The influence of head motion on intrinsic functional connectivity MRI. NeuroImage 59(1):431–438. doi:10.1016/j.neuroimage.2011.07.044

    PubMed Central  PubMed  Google Scholar 

  80. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 59(3):2142–2154. doi:10.1016/j.neuroimage.2011.10.018

    PubMed Central  PubMed  Google Scholar 

  81. Satterthwaite TD, Wolf DH, Loughead J, Ruparel K, Elliott MA, Hakonarson H, Gur RC, Gur RE (2012) Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth. NeuroImage 60(1):623–632. doi:10.1016/j.neuroimage.2011.12.063

    PubMed Central  PubMed  Google Scholar 

  82. Yan CG, Craddock RC, He Y, Milham MP (2013) Addressing head motion dependencies for small-world topologies in functional connectomics. doi:10.3389/fnhum.2013.00910

  83. Zalesky A, Fornito A, Bullmore ET (2010) Network-based statistic: identifying differences in brain networks. NeuroImage 53(4):1197–1207. doi:10.1016/j.neuroimage.2010.06.041

    PubMed  Google Scholar 

  84. Mori S, van Zijl PC (2002) Fiber tracking: principles and strategies—a technical review. NMR Biomed 15(7–8):468–480. doi:10.1002/nbm.781

    PubMed  Google Scholar 

  85. Behrens TE, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, Matthews PM, Brady JM, Smith SM (2003) Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magnet Reson Med: Off J Soc Magne Reson Med/Soc Magnet Reson Med 50(5):1077–1088. doi:10.1002/mrm.10609

    CAS  Google Scholar 

  86. Fair DA, Bathula D, Nikolas MA, Nigg JT (2012) Distinct neuropsychological subgroups in typically developing youth inform heterogeneity in children with ADHD. Proc Natl Acad Sci U S A 109(17):6769–6774. doi:10.1073/pnas.1115365109

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Volkow ND, Wang GJ, Kollins SH, Wigal TL, Newcorn JH, Telang F, Fowler JS, Zhu W, Logan J, Ma Y, Pradhan K, Wong C, Swanson JM (2009) Evaluating dopamine reward pathway in ADHD: clinical implications. JAMA: J Am Med Assoc 302(10):1084–1091. doi:10.1001/jama.2009.1308

    CAS  Google Scholar 

  88. Volkow ND, Wang GJ, Newcorn JH, Kollins SH, Wigal TL, Telang F, Fowler JS, Goldstein RZ, Klein N, Logan J, Wong C, Swanson JM (2011) Motivation deficit in ADHD is associated with dysfunction of the dopamine reward pathway. Mol Psychiatr 16(11):1147–1154. doi:10.1038/mp.2010.97

    CAS  Google Scholar 

  89. del Campo N, Fryer TD, Hong YT, Smith R, Brichard L, Acosta-Cabronero J, Chamberlain SR, Tait R, Izquierdo D, Regenthal R, Dowson J, Suckling J, Baron JC, Aigbirhio FI, Robbins TW, Sahakian BJ, Muller U (2013) A positron emission tomography study of nigro-striatal dopaminergic mechanisms underlying attention: implications for ADHD and its treatment. Brain J Neurol 136(Pt 11):3252–3270. doi:10.1093/brain/awt263

    Google Scholar 

  90. Altabella L, Zoratto F, Adriani W, Canese R (2014) MR imaging-detectable metabolic alterations in attention deficit/hyperactivity disorder: from preclinical to clinical studies. Am J Neuroradiol. doi:10.3174/ajnr.A3843

    PubMed  Google Scholar 

  91. Medin T, Rinholm JE, Owe SG, Sagvolden T, Gjedde A, Storm-Mathisen J, Bergersen LH (2013) Low dopamine D5 receptor density in hippocampus in an animal model of attention-deficit/hyperactivity disorder (ADHD). Neuroscience 242:11–20. doi:10.1016/j.neuroscience.2013.03.036

    CAS  PubMed  Google Scholar 

  92. Fan X, Bruno KJ, Hess EJ (2012) Rodent models of ADHD. Curr Top Behav Neurosci 9:273–300. doi:10.1007/7854_2011_121

    PubMed  Google Scholar 

  93. Liang X, Zou Q, He Y, Yang Y (2013) Coupling of functional connectivity and regional cerebral blood flow reveals a physiological basis for network hubs of the human brain. Proc Natl Acad Sci U S A 110(5):1929–1934. doi:10.1073/pnas.1214900110

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Tomasi D, Wang GJ, Volkow ND (2013) Energetic cost of brain functional connectivity. Proc Natl Acad Sci U S A 110(33):13642–13647. doi:10.1073/pnas.1303346110

    CAS  PubMed Central  PubMed  Google Scholar 

  95. An L, Cao XH, Cao QJ, Sun L, Yang L, Zou QH, Katya R, Zang YF, Wang YF (2013) Methylphenidate normalizes resting-state brain dysfunction in boys with attention deficit hyperactivity disorder. Neuropsychopharmacol: Off Publ Am College Neuropsychopharmacol 38(7):1287–1295. doi:10.1038/npp.2013.27

    CAS  Google Scholar 

  96. Volkow ND, Wang GJ, Tomasi D, Kollins SH, Wigal TL, Newcorn JH, Telang FW, Fowler JS, Logan J, Wong CT, Swanson JM (2012) Methylphenidate-elicited dopamine increases in ventral striatum are associated with long-term symptom improvement in adults with attention deficit hyperactivity disorder. J Neurosci Off J Soc Neurosci 32(3):841–849. doi:10.1523/JNEUROSCI.4461-11.2012

    CAS  Google Scholar 

  97. Mick E, Biederman J, Prince J, Fischer MJ, Faraone SV (2002) Impact of low birth weight on attention-deficit hyperactivity disorder. J Develop Behav Pediatr: JDBP 23(1):16–22

    Google Scholar 

  98. Rodriguez A, Bohlin G (2005) Are maternal smoking and stress during pregnancy related to ADHD symptoms in children? J Child Psychol Psychiatr, Allied Discipl 46(3):246–254. doi:10.1111/j.1469-7610.2004.00359.x

    Google Scholar 

  99. Ribases M, Hervas A, Ramos-Quiroga JA, Bosch R, Bielsa A, Gastaminza X, Fernandez-Anguiano M, Nogueira M, Gomez-Barros N, Valero S, Gratacos M, Estivill X, Casas M, Cormand B, Bayes M (2008) Association study of 10 genes encoding neurotrophic factors and their receptors in adult and child attention-deficit/hyperactivity disorder. Biol Psychiatr 63(10):935–945. doi:10.1016/j.biopsych.2007.11.004

    CAS  Google Scholar 

  100. Kent L, Green E, Hawi Z, Kirley A, Dudbridge F, Lowe N, Raybould R, Langley K, Bray N, Fitzgerald M, Owen MJ, O’Donovan MC, Gill M, Thapar A, Craddock N (2005) Association of the paternally transmitted copy of common Valine allele of the Val66Met polymorphism of the brain-derived neurotrophic factor (BDNF) gene with susceptibility to ADHD. Mol Psychiatr 10(10):939–943. doi:10.1038/sj.mp.4001696

    CAS  Google Scholar 

  101. Syed Z, Dudbridge F, Kent L (2007) An investigation of the neurotrophic factor genes GDNF, NGF, and NT3 in susceptibility to ADHD. Am J Med Genet Part B, Neuropsychiatr Genet: Off Publ Int Soc Psychiatr Genet 144B(3):375–378. doi:10.1002/ajmg.b.30459

    Google Scholar 

  102. Butts CT (2009) Revisiting the foundations of network analysis. Science 325(5939):414–416. doi:10.1126/science.1171022

    CAS  PubMed  Google Scholar 

  103. Wang J, Wang L, Zang Y, Yang H, Tang H, Gong Q, Chen Z, Zhu C, He Y (2009) Parcellation-dependent small-world brain functional networks: a resting-state fMRI study. Human Brain Map 30(5):1511–1523. doi:10.1002/hbm.20623

    Google Scholar 

  104. Liang X, Wang J, Yan C, Shu N, Xu K, Gong G, He Y (2012) Effects of different correlation metrics and preprocessing factors on small-world brain functional networks: a resting-state functional MRI study. PloS one 7(3):e32766. doi:10.1371/journal.pone.0032766

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Wang JH, Zuo XN, Gohel S, Milham MP, Biswal BB, He Y (2011) Graph theoretical analysis of functional brain networks: test-retest evaluation on short- and long-term resting-state functional MRI data. PloS one 6(7):e21976. doi:10.1371/journal.pone.0021976

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Liao XH, Xia MR, Xu T, Dai ZJ, Cao XY, Niu HJ, Zuo XN, Zang YF, He Y (2013) Functional brain hubs and their test-retest reliability: a multiband resting-state functional MRI study. NeuroImage 83:969–982. doi:10.1016/j.neuroimage.2013.07.058

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr Yanchao Bi for the insightful comments on this manuscript. This work was supported by the 973 Program (Grant nos. 2013CB837300 and 2014CB846102), the National Science Fund for Distinguished Young Scholars (Grant no. 81225012), the Natural Science Foundation of China (Grant nos. 81030028 and 31221003), the BNU-MRI Demonstration Unit (CERS-1-52), and the Beijing Funding for Training Talents (YH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, M., Shu, N., Cao, Q. et al. Imaging Functional and Structural Brain Connectomics in Attention-Deficit/Hyperactivity Disorder. Mol Neurobiol 50, 1111–1123 (2014). https://doi.org/10.1007/s12035-014-8685-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8685-x

Keywords

Navigation